九大查找算法,值得收藏

Posted C语言与CPP编程

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了九大查找算法,值得收藏相关的知识,希望对你有一定的参考价值。

时间、空间复杂度比较

查找算法平均时间复杂度空间复杂度查找条件
顺序查找O(n)O(1)无序或有序
二分查找(折半查找)O(log2n)O(1)有序
插值查找O(log2(log2n))O(1)有序
斐波那契查找O(log2n)O(1)有序
哈希查找O(1)O(n)无序或有序
二叉查找树(二叉搜索树查找)O(log2n)  
红黑树O(log2n)  
2-3树O(log2n - log3n)  
B树/B+树O(log2n)  

1 顺序查找

算法思路

对于任意一个序列,从一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。

代码

#include <stdio.h>
#include <stdlib.h>
#define keyType int
//2021.05.24
typedef struct 
{
	keyType key;//查找表中每个数据元素的值
}ElemType;

typedef struct
{
	ElemType *elem;//存放查找表中数据元素的数组
	int length;//记录查找表中数据的总数量
}SSTable;

//创建查询数据
void Create(SSTable **st,int length)
{
	(*st)=(SSTable*)malloc(sizeof(SSTable));
	(*st)->length=length;
	(*st)->elem =(ElemType*)malloc((length+1)*sizeof(ElemType));
	printf("输入表中的数据元素:\\n");
	//根据查找表中数据元素的总长度,在存储时,从数组下标为 1 的空间开始存储数据
	for (int i=1; i<=length; i++) 
	{
		scanf("%d",&((*st)->elem[i].key));
	}
}

//顺序查找函数,其中key为要查找的元素
int Search_seq(SSTable *str,keyType key)
{
	//str->elem[0].key=key;//将关键字作为一个数据元素存放到查找表的第一个位置,起监视哨的作用
	int len = str->length;   
	//从最后一个数据元素依次遍历,一直遍历到数组下标为0
	for(int i=1; i<len+1; i++)   //创建数据从数组下标为1开始,查询也从1开始
	{
		if(str->elem[i].key == key)
		{
			return i;
		}
	}
	//如果 i=0,说明查找失败;查找成功返回要查找元素key的位置i
	return 0;
}

int main() 
{
	SSTable *str;
	int num;
	printf("请输入创建数据元素的个数:\\n");
	scanf("%d",&num);
	Create(&str, num);   
	getchar();
	printf("请输入要查找的数据:\\n");
	int key;
	scanf("%d",&key);
	int location=Search_seq(str, key);
	if (location==0) {
		printf("查找失败");
	}else{
		printf("要查找的%d的顺序为:%d",key,location);
	}
	return 0;
}

运行结果

查找成功

查找成功

查找失败

查找失败

2 二分查找(折半查找)

算法思路

  1. 确定查找范围low=0,high=N-1,计算中项mid=(low+high)/2。

  2. 若mid==x或low>=high,则结束查找;否则,向下继续。

  3. 若amid<x,说明待查找的元素值只可能在比中项元素大的范围内,则把mid+1的值赋给low,并重新计算mid,转去执行步骤2;若mid>x,说明待查找的元素值只可能在比中项元素小的范围内,则把mid-1的值赋给higt,并重新计算mid,转去执行步骤2。

说明

  • 查找元素必须是有序的,如果是无序的则要先进行排序操作。

  • 在做查找的过程中,如果 low 指针和 high 指针的中间位置在计算时位于两个关键字中间,即求得 mid 的位置不是整数,需要统一做取整操作。

折半查找的前提条件是需要有序表顺序存储,对于静态查找表,一次排序后不再变化,折半查找能得到不错的效率。但对于需要频繁执行插入或删除操作的数据集来说,维护有序的排序会带来不小的工作量,那就不建议使用。

                         ——《大话数据结构》

代码

#include <stdio.h>
#include <stdlib.h>
#define keyType int
typedef struct 
{
	keyType key;//查找表中每个数据元素的值
}ElemType;

typedef struct
{
	ElemType *elem;//存放查找表中数据元素的数组
	int length;//记录查找表中数据的总数量
}SSTable;

//创建查询数据
void Create(SSTable **st,int length)
{
	(*st)=(SSTable*)malloc(sizeof(SSTable));
	(*st)->length=length;
	(*st)->elem =(ElemType*)malloc((length+1)*sizeof(ElemType));
	printf("输入表中的数据元素:\\n");
	//根据查找表中数据元素的总长度,在存储时,从数组下标为 1 的空间开始存储数据
	for (int i=1; i<=length; i++) 
	{
		scanf("%d",&((*st)->elem[i].key));
	}
}

//折半查找函数 key为要查找的元素
int Search_Bin(SSTable *str,keyType key)
{
	int low=1;//初始状态 low 指针指向第一个关键字
	int high=str->length;//high 指向最后一个关键字
	int mid;
	while (low<=high) 
	{
		mid=(low+high)/2;//int 本身为整形,所以,mid 每次为取整的整数
		if(str->elem[mid].key==key)//如果 mid 指向的同要查找的相等,返回 mid 所指向的位置
		{
			return mid;
		}
        else if(str->elem[mid].key>key)//如果mid指向的关键字较大,则更新 high 指针的位置
		{
			high=mid-1;
		}
		//反之,则更新 low 指针的位置
		else
		{
			low=mid+1;
		}
	}
	return 0;
}

int main() 
{
	SSTable *str;
	int num;
	printf("请输入创建数据元素的个数:\\n");
	scanf("%d",&num);
	Create(&str, num);   
	getchar();
	printf("请输入要查找的数据:\\n");
	int key;
	scanf("%d",&key);
	int location=Search_Bin(str, key);
	if (location==0) {
		printf("没有查找到");
	}else{
		printf("要查找的%d的顺序为:%d",key,location);
	}
	return 0;
}

运行结果

查找成功

查找成功

没有查找到

没有查找到

3 插值查找

插值查找基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找

算法思路

  1. 确定查找范围low=0,high=N-1,计算中项mid=low+(key-a[low])/(a[high]-a[low])*(high-low)。

  2. 若mid==x或low>=high,则结束查找;否则,向下继续。

  3. 若amid<x,说明待查找的元素值只可能在比中项元素大的范围内,则把mid+1的值赋给low,并重新计算mid,转去执行步骤2;若mid>x,说明待查找的元素值只可能在比中项元素小的范围内,则把mid-1的值赋给higt,并重新计算mid,转去执行步骤2。

说明

  • 插值查找是基于折半查找进行了优化的查找方法。

  • 当表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能要比折半查找要好得多。

代码

#include<stdio.h>

int array[10] = { 1, 4, 9, 16, 27, 31, 33, 35, 45, 64 };

int InsertionSearch(int data) 
{
    int low = 0;
    int high = 10 - 1;
    int mid = -1;
    int comparisons = 1;      
    int index = -1;
    
    while(low <= high) 
    {
       printf("比较 %d 次\\n" , comparisons );
       printf("low : %d, list[%d] = %d\\n", low, low, array[low]);
       printf("high : %d, list[%d] = %d\\n", high, high, array[high]);

       comparisons++;
       mid = low + (((double)(high - low) / (array[high] - array[low])) * (data - array[low]));
       printf("mid = %d\\n",mid);
       
       // 没有找到
       if(array[mid] == data) 
       {
	   index = mid;
           break;
        }
	else 
	{
	   if(array[mid] < data) 
           {
               low = mid + 1;
           } 
           else 
	   {
	       high = mid - 1;
	    }
	 }               
     }

     printf("比较次数: %d\\n", --comparisons);
     return index;
}

int main() 
{
    int location = InsertionSearch(27);  //测试代,查27,可以找到
    if(location != -1)
    {
	printf("查找元素顺序为: %d\\n" ,(location+1));
     }
     else
     {
         printf("没有查找到");
     }
     return 0;
}

运行结果

运行结果

运行结果

4 斐波那契查找

斐波那契查找与折半查找很相似,他是根据斐波那契序列的特点对有序表进行分割的。他要求开始表中记录的个数为某个斐波那契数小1,及n=F(k)-1;开始将k值与第F(k-1)位置的记录进行比较(及mid=low+F(k-1)-1).

算法思路

  1. 相等,mid位置的元素即为所求

  2. 大于,low=mid+1,k-=2;

  3. 小于,high=mid-1,k-=1。

说明

low=mid+1说明待查找的元素在[mid+1,high]范围内,k-=2 说明范围[mid+1,high]内的元素个数为n-(F(k-1))= Fk-1-F(k-1)=Fk-F(k-1)-1=F(k-2)-1个,所以可以递归的应用斐波那契查找。

代码

#include "stdafx.h"
#include <memory>
#include  <iostream>
using namespace std;

const int max_size=20;//斐波那契数组的长度

/*构造一个斐波那契数组*/ 
void Fibonacci(int * F)
{
    F[0]=0;
    F[1]=1;
    for(int i=2;i<max_size;++i)
        F[i]=F[i-1]+F[i-2];
}

/*定义斐波那契查找法*/  
int FibonacciSearch(int *a, int n, int key)  //a为要查找的数组,n为要查找的数组长度,key为要查找的关键字
{
  int low=0;
  int high=n-1;
  
  int F[max_size];
  Fibonacci(F);//构造一个斐波那契数组F 

  int k=0;
  while(n>F[k]-1)//计算n位于斐波那契数列的位置
      ++k;

  int  * temp;//将数组a扩展到F[k]-1的长度
  temp=new int [F[k]-1];
  memcpy(temp,a,n*sizeof(int));

  for(int i=n;i<F[k]-1;++i)
     temp[i]=a[n-1];
  
  while(low<=high)
  {
    int mid=low+F[k-1]-1;
    if(key<temp[mid])
    {
      high=mid-1;
      k-=1;
    }
    else if(key>temp[mid])
    {
     low=mid+1;
     k-=2;
    }
    else
    {
       if(mid<n)
           return mid; //若相等则说明mid即为查找到的位置
       else
           return n-1; //若mid>=n则说明是扩展的数值,返回n-1
    }
  }  
  delete [] temp;
  return 0;
}

int main()
{
    int a[] = {0,1,4,35,47,53,62,78,88,99};
    int key=47;
    int index=FibonacciSearch(a,sizeof(a)/sizeof(int),key);
	if(index == 0)
	{
	   cout<<"没有找到"<<key;
	}
	else
	{
       cout<<key<<" 的位置是:"<<index;
	}
    return 0;
}

运行结果

47的位置为5

47的位置为5

5 哈希查找

哈希表

我们使用一个下标范围比较大的数组来存储元素。可以设计一个函数(哈希函数, 也叫做散列函数),使得每个元素的关键字都与一个函数值(即数组下标)相对应,于是用这个数组单元来存储这个元素;也可以简单的理解为,按照关键字为每一个元素"分类",然后将这个元素存储在相应"类"所对应的地方。但是,不能够保证每个元素的关键字与函数值是一一对应的,因此极有可能出现对于不同的元素,却计算出了相同的函数值,这样就产生了"冲突",换句话说,就是把不同的元素分在了相同的"类"之中。后面我们将看到一种解决"冲突"的简便做法。

"直接定址"与"解决冲突"是哈希表的两大特点。

哈希函数

规则:通过某种转换关系,使关键字适度的分散到指定大小的的顺序结构中,越分散,则以后查找的时间复杂度越小,空间复杂度越高。

算法思路

如果所有的键都是整数,那么就可以使用一个简单的无序数组来实现:将键作为索引,值即为其对应的值,这样就可以快速访问任意键的值。这是对于简单的键的情况,我们将其扩展到可以处理更加复杂的类型的键。

  1. 用给定的哈希函数构造哈希表;

  2. 根据选择的冲突处理方法(常见方法:拉链法和线性探测法)解决地址冲突;

  3. 在哈希表的基础上执行哈希查找;

代码

#include<stdio.h>
#include<stdlib.h>

#define SUCCESS 1
#define UNSUCCESS 0
#define OVERFLOW -1
#define OK 1
#define ERROR -1
#define MAXNUM 9999		// 用于初始化哈希表的记录 key

typedef int Status;
typedef int KeyType;

// 哈希表中的记录类型
typedef struct 
{
	KeyType key;
}RcdType;

// 哈希表类型
typedef struct 
{
	RcdType *rcd;
	int size;
	int count;
	int *tag;
}HashTable;

// 哈希表每次重建增长后的大小
int hashsize[] = { 11, 31, 61, 127, 251, 503 };
int index = 0;

// 初始哈希表
Status InitHashTable(HashTable &H, int size) 
{
	int i;
	H.rcd = (RcdType *)malloc(sizeof(RcdType)*size);
	H.tag = (int *)malloc(sizeof(int)*size);
	if (NULL == H.rcd || NULL == H.tag) return OVERFLOW;
	KeyType maxNum = MAXNUM;
	for (i = 0; i < size; i++) 
	{
		H.tag[i] = 0;
		H.rcd[i].key = maxNum;
	}
	H.size = size;
	H.count = 0;
	return OK;
}

// 哈希函数:除留余数法
int Hash(KeyType key, int m) 
{
	return (3 * key) % m;
}

// 处理哈希冲突:线性探测
void collision(int &p, int m) 
{
	p = (p + 1) % m;
}

// 在哈希表中查询
Status SearchHash(HashTable H, KeyType key, int &p, int &c) 
{
	p = Hash(key, H.size);
	int h = p;
	c = 0;
	while ((1 == H.tag[p] && H.rcd[p].key != key) || -1 == H.tag[p]) 
	{
		collision(p, H.size);  c++;
	}

	if (1 == H.tag[p] && key == H.rcd[p].key) return SUCCESS;
	else return UNSUCCESS;
}

//打印哈希表
void printHash(HashTable H)
{
	int  i;
	printf("key : ");
	for (i = 0; i < H.size; i++)
		printf("%3d ", H.rcd[i].key);
	printf("\\n");
	printf("tag : ");
	for (i = 0; i < H.size; i++)
		printf("%3d ", H.tag[i]);
	printf("\\n\\n");
}

// 函数声明:插入哈希表
Status InsertHash(HashTable &H, KeyType key);

// 重建哈希表
Status recreateHash(HashTable &H) 
{
	RcdType *orcd;
	int *otag, osize, i;
	orcd = H.rcd;
	otag = H.tag;
	osize = H.size;

	InitHashTable(H, hashsize[index++]);
	//把所有元素,按照新哈希函数放到新表中
	for (i = 0; i < osize; i++) 
	{
		if (1 == otag[i]) 
		{
			InsertHash(H, orcd[i].key);
		}
	}
	return OK;
}

// 插入哈希表
Status InsertHash(HashTable &H, KeyType key) 
{
	int p, c;
	if (UNSUCCESS == SearchHash(H, key, p, c)) 
	{ //没有相同key
		if (c*1.0 / H.size < 0.5) 
		{ //冲突次数未达到上线
			//插入代码
			H.rcd[p].key = key;
			H.tag[p] = 1;
			H.count++;
			return SUCCESS;
		}
		else recreateHash(H); //重构哈希表 
	}
	return UNSUCCESS;
}

// 删除哈希表
Status DeleteHash(HashTable &H, KeyType key) 
{
	int p, c;
	if (SUCCESS == SearchHash(H, key, p, c)) 
	{
		//删除代码
		H.tag[p] = -1;
		H.count--;
		return SUCCESS;
	}
	else return UNSUCCESS;
}

int main()
{
	printf("-----哈希表-----\\n");
	HashTable H;
	int i;
	int size = 11;
	KeyType array[8] = { 22, 41, 53, 46, 30, 13, 12, 67 };
	KeyType key;

	//初始化哈希表
	printf("初始化哈希表\\n");
	if (SUCCESS == InitHashTable(H, hashsize[index++])) printf("初始化成功\\n");

	//插入哈希表
	printf("插入哈希表\\n");
	for (i = 0; i <= 7; i++) 
	{
		key = array[i];
		InsertHash(H, key);
		printHash(H);
	}

	//删除哈希表
	printf("删除哈希表中key为12的元素\\n");
	int p, c;
	if (SUCCESS == DeleteHash(H, 12)) 
	{
		printf("删除成功,此时哈希表为:\\n");
		printHash(H);
	}

	//查询哈希表
	printf("查询哈希表中key为67的元素\\n");
	if (SUCCESS == SearchHash(H, 67, p, c)) printf("查询成功\\n");

	//再次插入,测试哈希表的重建
	printf("再次插入,测试哈希表的重建:\\n");
	KeyType array1[8] = { 27, 47, 57, 47, 37, 17, 93, 67 };
	for (i = 0; i <= 7; i++) 
	{
		key = array1[i];
		InsertHash(H, key);
		printHash(H);
	}

	getchar();
	return 0;
}

6 二叉树查找

二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。

算法思路

  1. 若b是空树,则搜索失败:

  2. 若x等于b的根节点的数据域之值,则查找成功:

  3. 若x小于b的根节点的数据域之值,则搜索左子树:

  4. 查找右子树。

代码

递归和非递归

//非递归查找算法
BSTNode *BST_Search(BiTree T,ElemType key,BSTNode *&p)
{
    //查找函数返回指向关键字值为key的结点指针,不存在则返回NULL
    p=NULL;     
    while(T!=NULL&&key!=T->data)
    {
        p=T;                          //指向被查找结点的双亲  
        if(key<T->data)
            T=T->lchild;              //查找左子树
        else
            T=T->rchild;              //查找右子树
    }
    return T;
}

//递归算法
Status Search_BST(BiTree T, int key, BiTree f, BiTree *p)
{
    //查找BST中是否存在key,f指向T双亲,其初始值为NULL
    //若查找成功,指针p指向数据元素结点,返回true;
    //若失败,p指向查找路径上访问的最后一个结点并返回false
    if(!T)
    {
        *p=f;
        return false;
    }
    else if(key==T->data)
    {                      //查找成功
        *p=T;
        return true;
    }
    else if(key<T->data)
        return Search_BST(T->lchild,key,T,p);   //递归查找左子树
    else
        return Search_BST(T->rchild,key,T,p);   //递归查找右子树
    
}

7 2-3树

2-3树运行每个节点保存1个或者两个的值。对于普通的2节点(2-node),他保存1个key和左右两个自己点。对应3节点(3-node),保存两个Key,2-3查找树的定义如下:

  1. 要么为空,要么:

  2. 对于2节点,该节点保存一个key及对应value,以及两个指向左右节点的节点,左节点也是一个2-3节点,所有的值都比key要小,右节点也是一个2-3节点,所有的值比key要大。

  3. 对于3节点,该节点保存两个key及对应value,以及三个指向左中右的节点。左节点也是一个2-3节点,所有的值均比两个key中的最小的key还要小;中间节点也是一个2-3节点,中间节点的key值在两个跟节点key值之间;右节点也是一个2-3节点,节点的所有key值比两个key中的最大的key还要大。

算法思路:

要判断一个键是否在树中,我们先将它和根结点中的键比较。如果它和其中的任何一个相等,查找命中。否则我们就根据比较的结果找到指向相应区间的链接,并在其指向的子树中递归地继续查找。如果这是个空链接,查找未命中。

2-3 树中查找键为H的节点

2-3 树中查找键为H的节点

2-3 树中查找键为B的节点

2-3 树中查找键为B的节点

代码

two_three *search23(two_three *t, element x)
{
    while(t) 
    {
        if (x < t->data_l) 
        {
            t = t->left_child;
        }
        else if (x > t->data_l && x < t->data_r) 
        {
            t = t->middle_child;
        } 
        else if (x > t->data_r) 
        {
            t = t->right_child;
        } 
        else 
        {
            return t;
        }
    }
    return NULL;
}

8 红黑树

2-3查找树能保证在插入元素之后能保持树的平衡状态,最坏情况下即所有的子节点都是2-node,树的高度为lgn,从而保证了最坏情况下的时间复杂度。但是2-3树实现起来比较复杂,于是就有了一种简单实现2-3树的数据结构,即红黑树(Red-Black Tree)。

理解红黑树一句话就够了:红黑树就是用红链接表示3-结点的2-3树

现在我们对2-3树进行改造,改造成一个二叉树。怎么改造呢?对于2节点,保持不变;对于3节点,我们首先将3节点中左侧的元素标记为红色,然后我们将其改造成图3的形式;

再将3节点的位于中间的子节点的父节点设置为父节点中那个红色的节点,如图4的所示;最后我们将图4的形式改为二叉树的样子,如图5所示。图5是不是很熟悉,没错,这就是我们常常提到的大名鼎鼎的红黑树了。如下图所示。

2-3树转红黑树

2-3树转红黑树

为什么使用红黑树

  • 红黑树是一种平衡树,他复杂的定义和规则都是为了保证树的平衡性。如果树不保证他的平衡性就是下图:很显然这就变成一个链表了。

  • 保证平衡性的最大的目的就是降低树的高度,因为树的查找性能取决于树的高度。所以树的高度越低搜索的效率越高!

  • 这也是为什么存在二叉树、搜索二叉树等,各类树的目的。

红黑树性质

  • 每个节点要么是黑色,要么是红色。

  • 根节点是黑色。

  • 每个叶子节点(NIL)是黑色。

  • 每个红色结点的两个子结点一定都是黑色。

  • 任意一结点到每个叶子结点的路径都包含数量相同的黑结点。

算法思路

红黑树的思想就是对2-3查找树进行编码,尤其是对2-3查找树中的3-nodes节点添加额外的信息。红黑树中将节点之间的链接分为两种不同类型,红色链接,他用来链接两个2-nodes节点来表示一个3-nodes节点。黑色链接用来链接普通的2-3节点。特别的,使用红色链接的两个2-nodes来表示一个3-nodes节点,并且向左倾斜,即一个2-node是另一个2-node的左子节点。这种做法的好处是查找的时候不用做任何修改,和普通的二叉查找树相同

代码

#define BLACK 1
#define RED 0
#include <iostream>

using namespace std;

class bst 
{
private:

	struct Node 
	{
		int value;
		bool color;
		Node *leftTree, *rightTree, *parent;

		Node() : value(0), color(RED), leftTree(NULL), rightTree(NULL), parent(NULL) { }

		Node* grandparent() 
		{
			if (parent == NULL) 
			{
				return NULL;
			}
			return parent->parent;
		}

		Node* uncle() 
		{
			if (grandparent() == NULL) 
			{
				return NULL;
			}
			if (parent == grandparent()->rightTree)
				return grandparent()->leftTree;
			else
				return grandparent()->rightTree;
		}

		Node* sibling() 
		{
			if (parent->leftTree == this)
				return parent->rightTree;
			else
				return parent->leftTree;
		}
	};

	void rotate_right(Node *p) 
	{
		Node *gp = p->grandparent();
		Node *fa = p->parent;
		Node *y = p->rightTree;

		fa->leftTree = y;

		if (y != NIL)
			y->parent = fa;
		p->rightTree = fa;
		fa->parent = p;

		if (root == fa)
			root = p;
		p->parent = gp;

		if (gp != NULL) 
		{
			if (gp->leftTree == fa)
				gp->leftTree = p;
			else
				gp->rightTree = p;
		}

	}

	void rotate_left(Node *p) 
	{
		if (p->parent == NULL) 
		{
			root = p;
			return;
		}
		Node *gp = p->grandparent();
		Node *fa = p->parent;
		Node *y = p->leftTree;

		fa->rightTree = y;

		if (y != NIL)
			y->parent = fa;
		p->leftTree = fa;
		fa->parent = p;

		if (root == fa)
			root = p;
		p->parent = gp;

		if (gp != NULL) 
		{
			if (gp->leftTree == fa)
				gp->leftTree = p;
			else
				gp->rightTree = p;
		}
	}

	void inorder(Node *p) 
	{
		if (p == NIL)
			return;

		if (p->leftTree)
			inorder(p->leftTree);

		cout << p->value << " ";

		if (p->rightTree)
			inorder(p->rightTree);
	}

	string outputColor(bool color) 
	{
		return color ? "BLACK" : "RED";
	}

	Node* getSmallestChild(Node *p) 
	{
		if (p->leftTree == NIL)
			return p;
		return getSmallestChild(p->leftTree);
	}

	bool delete_child(Node *p, int data) 
	{
		if (p->value > data) 
		{
			if (p->leftTree == NIL) 
			{
				return false;
			}
			return delete_child(p->leftTree, data);
		}
		else if (p->value < data) 
		{
			if (p->rightTree == NIL) 
			{
				return false;
			}
			return delete_child(p->rightTree, data);
		}
		else if (p->value == data) 
		{
			if (p->rightTree == NIL) 
			{
				delete_one_child(p);
				return true;
			}
			Node *smallest = getSmallestChild(p->rightTree);
			swap(p->value, smallest->value);
			delete_one_child(smallest);

			return true;
		}
		else 
		{
			return false;
		}
	}

	void delete_one_child(Node *p) 
	{
		Node *child = p->leftTree == NIL ? p->rightTree : p->leftTree;
		if (p->parent == NULL && p->leftTree == NIL && p->rightTree == NIL) 
		{
			p = NULL;
			root = p;
			return;
		}

		if (p->parent == NULL) 
		{
			delete  p;
			child->parent = NULL;
			root = child;
			root->color = BLACK;
			return;
		}

		if (p->parent->leftTree == p) 
		{
			p->parent->leftTree = child;
		}
		else 
		{
			p->parent->rightTree = child;
		}
		child->parent = p->parent;

		if (p->color == BLACK) 
		{
			if (child->color == RED) 
			{
				child->color = BLACK;
			}
			else
				delete_case(child);
		}

		delete p;
	}

	void delete_case(Node *p) 
	{
		if (p->parent == NULL) 
		{
			p->color = BLACK;
			return;
		}
		if (p->sibling()->color == RED) 
		{
			p->parent->color = RED;
			p->sibling()->color = BLACK;
			if (p == p->parent->leftTree)
				rotate_left(p->sibling());
			else
				rotate_right(p->sibling());
		}
		if (p->parent->color == BLACK && p->sibling()->color == BLACK
			&& p->sibling()->leftTree->color == BLACK && p->sibling()->rightTree->color == BLACK) 
		{
			p->sibling()->color = RED;
			delete_case(p->parent);
		}
		else if (p->parent->color == RED && p->sibling()->color == BLACK
			&& p->sibling()->leftTree->color == BLACK && p->sibling()->rightTree->color == BLACK) 
		{
			p->sibling()->color = RED;
			p->parent->color = BLACK;
		}
		else 
		{
			if (p->sibling()->color == BLACK) 
			{
				if (p == p->parent->leftTree && p->sibling()->leftTree->color == RED
					&& p->sibling()->rightTree->color == BLACK) 
				{
					p->sibling()->color = RED;
					p->sibling()->leftTree->color = BLACK;
					rotate_right(p->sibling()->leftTree);
				}
				else if (p == p->parent->rightTree && p->sibling()->leftTree->color == BLACK
					&& p->sibling()->rightTree->color == RED) 
				{
					p->sibling()->color = RED;
					p->sibling()->rightTree->color = BLACK;
					rotate_left(p->sibling()->rightTree);
				}
			}
			p->sibling()->color = p->parent->color;
			p->parent->color = BLACK;
			if (p == p->parent->leftTree) 
			{
				p->sibling()->rightTree->color = BLACK;
				rotate_left(p->sibling());
			}
			else 
			{
				p->sibling()->leftTree->color = BLACK;
				rotate_right(p->sibling());
			}
		}
	}

	void insert(Node *p, int data) 
	{
		if (p->value >= data) 
		{
			if (p->leftTree != NIL)
				insert(p->leftTree, data);
			else 
			{
				Node *tmp = new Node();
				tmp->value = data;
				tmp->leftTree = tmp->rightTree = NIL;
				tmp->parent = p;
				p->leftTree = tmp;
				insert_case(tmp);
			}
		}
		else 
		{
			if (p->rightTree != NIL)
				insert(p->rightTree, data);
			else 
			{
				Node *tmp = new Node();
				tmp->value = data;
				tmp->leftTree = tmp->rightTree = NIL;
				tmp->parent = p;
				p->rightTree = tmp;
				insert_case(tmp);
			}
		}
	}

	void insert_case(Node *p) 
	{
		if (p->parent == NULL) 
		{
			root = p;
			p->color = BLACK;
			return;
		}
		if (p->parent->color == RED) 
		{
			if (p->uncle()->color == RED) 
			{
				p->parent->color = p->uncle()->color = BLACK;
				p->grandparent()->color = RED;
				insert_case(p->grandparent());
			}
			else 
			{
				if (p->parent->rightTree == p && p->grandparent()->leftTree == p->parent) 
				{
					rotate_left(p);
					rotate_right(p);
					p->color = BLACK;
					p->leftTree->color = p->rightTree->color = RED;
				}
				else if (p->parent->leftTree == p && p->grandparent()->rightTree == p->parent) 
				{
					rotate_right(p);
					rotate_left(p);
					p->color = BLACK;
					p->leftTree->color = p->rightTree->color = RED;
				}
				else if (p->parent->leftTree == p && p->grandparent()->leftTree == p->parent) 
				{
					p->parent->color = BLACK;
					p->grandparent()->color = RED;
					rotate_right(p->parent);
				}
				else if (p->parent->rightTree == p && p->grandparent()->rightTree == p->parent) 
				{
					p->parent->color = BLACK;
					p->grandparent()->color = RED;
					rotate_left(p->parent);
				}
			}
		}
	}

	void DeleteTree(Node *p) 
	{
		if (!p || p == NIL) 
		{
			return;
		}
		DeleteTree(p->leftTree);
		DeleteTree(p->rightTree);
		delete p;
	}
public:

	bst() 
	{
		NIL = new Node();
		NIL->color = BLACK;
		root = NULL;
	}

	~bst() 
	{
		if (root)
			DeleteTree(root);
		delete NIL;
	}

	void inorder() 
	{
		if (root == NULL)
			return;
		inorder(root);
		cout << endl;
	}

	void insert(int x) 
	{
		if (root == NULL) 
		{
			root = new Node();
			root->color = BLACK;
			root->leftTree = root->rightTree = NIL;
			root->value = x;
		}
		else 
		{
			insert(root, x);
		}
	}

	bool delete_value(int data) 
	{
		return delete_child(root, data);
	}
private:
	Node *root, *NIL;
};

int main()
{
	cout << "---【红黑树】---" << endl;
	// 创建红黑树
	bst tree;

	// 插入元素
	tree.insert(2);
	tree.insert(9);
	tree.insert(-10);
	tree.insert(0);
	tree.insert(33);
	tree.insert(-19);

	// 顺序打印红黑树
	cout << "插入元素后的红黑树:" << endl;
	tree.inorder();

	// 删除元素
	tree.delete_value(2);

	// 顺序打印红黑树
	cout << "删除元素 2 后的红黑树:" << endl;
	tree.inorder();

	// 析构
	tree.~bst();

	getchar();
	return 0;
}

9 B树/B+树

在计算机科学中,B树(B-tree)是一种树状数据结构,它能够存储数据、对其进行排序并允许以O(log n)的时间复杂度运行进行查找、顺序读取、插入和删除的数据结构。B树,概括来说是一个节点可以拥有多于2个子节点的二叉查找树。与自平衡二叉查找树不同,B-树为系统最优化大块数据的读和写操作。B-tree算法减少定位记录时所经历的中间过程,从而加快存取速度。普遍运用在数据库和文件系统。

                             ——维基百科

B 树可以看作是对2-3查找树的一种扩展,即他允许每个节点有M-1个子节点。

  • 定义任意非叶子结点最多只有M个儿子;且M>2;

  • 根结点的儿子数为[2, M];

  • 除根结点以外的非叶子结点的儿子数为[M/2, M];

  • 每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)

  • 非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];

  • 非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的 子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;

  • 所有叶子结点位于同一层;

如:(M=3)

1

算法思路

从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;

  • 关键字集合分布在整颗树中;

  • 任何一个关键字出现且只出现在一个结点中;

  • 搜索有可能在非叶子结点结束;

  • 其搜索性能等价于在关键字全集内做一次二分查找;

  • 自动层次控制;

代码

BTNode* BTree_recursive_search(const BTree tree, KeyType key, int* pos) 
{ 
    int i = 0; 
    while (i < tree->keynum && key > tree->key[i]) 
    { 
        ++i; 
    } 
   
    // 查找关键字 
    if (i < tree->keynum && tree->key[i] == key) 
    { 
        *pos = i; 
        return tree; 
    } 
   
    // tree 为叶子节点,找不到 key,查找失败返回 
    if (tree->isLeaf) 
    { 
        return NULL; 
    } 
   
    // 节点内查找失败,但 tree->key[i - 1]< key < tree->key[i], 
    // 下一个查找的结点应为 child[i] 
   
    // 从磁盘读取第 i 个孩子的数据 
    disk_read(&tree->child[i]); 
   
    // 递归地继续查找于树 tree->child[i] 
    return BTree_recursive_search(tree->child[i], key, pos); 
}

B+树

B+树是B树的变体,也是一种多路搜索树:

其定义基本与B-树同,除了:

  • 非叶子结点的子树指针与关键字个数相同;

  • 非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树, B树是开区间

  • 为所有叶子结点增加一个链指针;

  • 所有关键字都在叶子结点出现;

如:(M=3)

1

1

算法思路

B+的搜索与B树也基本相同,区别是B+树只有达到叶子结点才命中(B树可以在 非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;https://blog.csdn.net/u013171283/article/details/82951039

  • 所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;

  • 不可能在非叶子结点命中;

  • 非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;

  • 更适合文件索引系统;

参考资料

  1. https://www.sohu.com/a/296278527_478315

  2. https://www.cnblogs.com/exzlc/p/12203744.html

  3. 部分配图来源于网络

以上是关于九大查找算法,值得收藏的主要内容,如果未能解决你的问题,请参考以下文章

C语言实现九大排序算法(建议收藏!)

JS常用代码片段2-值得收藏

JS常用代码片段2-值得收藏

JS常用代码片段-127个常用罗列-值得收藏

九大排序算法

带你整理面试过程中常考的九大排序算法