2021年大数据环境搭建:分布式环境搭建

Posted Lansonli

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2021年大数据环境搭建:分布式环境搭建相关的知识,希望对你有一定的参考价值。

目录

分布式环境搭建

集群规划

安装包解压

​​​​​​​配置文件的修改

​​​​​​​修改core-site.xml

​​​​​​​修改hdfs-site.xml

​​​​​​​修改yarn-site.xml,注意node03与node02配置不同

​​​​​​​修改mapred-site.xml

​​​​​​​修改slaves

​​​​​​​修改hadoop-env.sh

​​​​​​​集群启动过程

​​​​​​​启动HDFS过程

​​​​​​​启动yarn过程

​​​​​​​查看resourceManager状态

​​​​​​​node3启动jobHistory

​​​​​​​hdfs状态查看

​​​​​​​yarn集群访问查看

​​​​​​​历史任务浏览界面


分布式环境搭建

 

集群规划

使用完全分布式,实现namenode高可用,ResourceManager的高可用

集群运行服务规划

 

node1

node2

node3

zookeeper

zk

zk

zk

HDFS

JournalNode

JournalNode

JournalNode

NameNode

NameNode

 

ZKFC

ZKFC

 

DataNode

DataNode

DataNode

YARN

 

ResourceManager

ResourceManager

NodeManager

NodeManager

NodeManager

MapReduce

 

 

JobHistoryServer

 

​​​​​​​安装包解压

停止之前的hadoop集群的所有服务,然后重新解压编译后的hadoop压缩包

解压压缩包

node1机器执行以下命令进行解压

mkdir -p /opt/software

mkdir -p /opt/server

cd /opt/software

tar -zxvf hadoop-2.7.5.tar.gz -C /opt/server/

cd /opt/server/hadoop-2.7.5/etc/hadoop

 

​​​​​​​配置文件的修改

以下操作都在node1机器上进行

​​​​​​​修改core-site.xml

<configuration>

<!-- 指定NameNode的HA高可用的zk地址  -->

 <property>

   <name>ha.zookeeper.quorum</name>

   <value>node1:2181,node2:2181,node3:2181</value>

 </property>

 <!-- 指定HDFS访问的域名地址  -->

 <property>

   <name>fs.defaultFS</name>

   <value>hdfs://ns</value>

 </property>

 <!-- 临时文件存储目录  -->

<property>

  <name>hadoop.tmp.dir</name>

  <value>/opt/server/hadoop-2.7.5/data/tmp</value>

</property>

 <!-- 开启hdfs垃圾箱机制,指定垃圾箱中的文件七天之后就彻底删掉

单位为分钟

 -->

<property>

 <name>fs.trash.interval</name>

 <value>10080</value>

</property>

</configuration>

 

​​​​​​​修改hdfs-site.xml

<configuration>

<!-- 指定NameNode的HA高可用的zk地址  -->

 <property>

   <name>ha.zookeeper.quorum</name>

   <value>node1:2181,node2:2181,node3:2181</value>

 </property>

 <!-- 指定HDFS访问的域名地址  -->

 <property>

   <name>fs.defaultFS</name>

   <value>hdfs://ns</value>

 </property>

 <!-- 临时文件存储目录  -->

<property>

  <name>hadoop.tmp.dir</name>

  <value>/opt/server/hadoop-2.7.5/data/tmp</value>

</property>

 <!-- 开启hdfs垃圾箱机制,指定垃圾箱中的文件七天之后就彻底删掉

单位为分钟

 -->

<property>

 <name>fs.trash.interval</name>

 <value>10080</value>

</property>

</configuration>

 

​​​​​​​修改yarn-site.xml注意node03node02配置不同

<configuration>

<!-- Site specific YARN configuration properties -->

<!-- 是否启用日志聚合.应用程序完成后,日志汇总收集每个容器的日志,这些日志移动到文件系统,例如HDFS. -->

<!-- 用户可以通过配置"yarn.nodemanager.remote-app-log-dir"、"yarn.nodemanager.remote-app-log-dir-suffix"来确定日志移动到的位置 -->

<!-- 用户可以通过应用程序时间服务器访问日志 -->



<!-- 启用日志聚合功能,应用程序完成后,收集各个节点的日志到一起便于查看 -->

<property>

<name>yarn.log-aggregation-enable</name>

<value>true</value>

</property>

 



<!--开启resource manager HA,默认为false--> 

<property>

        <name>yarn.resourcemanager.ha.enabled</name>

        <value>true</value>

</property>

<!-- 集群的Id,使用该值确保RM不会做为其它集群的active -->

<property>

        <name>yarn.resourcemanager.cluster-id</name>

        <value>mycluster</value>

</property>

<!--配置resource manager  命名-->

<property>

        <name>yarn.resourcemanager.ha.rm-ids</name>

        <value>rm1,rm2</value>

</property>

<!-- 配置第一台机器的resourceManager -->

<property>

        <name>yarn.resourcemanager.hostname.rm1</name>

        <value>node2</value>

</property>

<!-- 配置第二台机器的resourceManager -->

<property>

        <name>yarn.resourcemanager.hostname.rm2</name>

        <value>node3</value>

</property>



<!-- 配置第一台机器的resourceManager通信地址 -->

<property>

        <name>yarn.resourcemanager.address.rm1</name>

        <value>node2:8032</value>

</property>

<property>

        <name>yarn.resourcemanager.scheduler.address.rm1</name>

        <value>node2:8030</value>

</property>

<property>

        <name>yarn.resourcemanager.resource-tracker.address.rm1</name>

        <value>node2:8031</value>

</property>

<property>

        <name>yarn.resourcemanager.admin.address.rm1</name>

        <value>node2:8033</value>

</property>

<property>

        <name>yarn.resourcemanager.webapp.address.rm1</name>

        <value>node2:8088</value>

</property>



<!-- 配置第二台机器的resourceManager通信地址 -->

<property>

        <name>yarn.resourcemanager.address.rm2</name>

        <value>node3:8032</value>

</property>

<property>

        <name>yarn.resourcemanager.scheduler.address.rm2</name>

        <value>node3:8030</value>

</property>

<property>

        <name>yarn.resourcemanager.resource-tracker.address.rm2</name>

        <value>node3:8031</value>

</property>

<property>

        <name>yarn.resourcemanager.admin.address.rm2</name>

        <value>node3:8033</value>

</property>

<property>

        <name>yarn.resourcemanager.webapp.address.rm2</name>

        <value>node3:8088</value>

</property>





<!--开启resourcemanager自动恢复功能-->

<property>

        <name>yarn.resourcemanager.recovery.enabled</name>

        <value>true</value>

</property>

<!--在node2上配置rm1,在node3上配置rm2,注意:一般都喜欢把配置好的文件远程复制到其它机器上,但这个在YARN的另一个机器上一定要修改,其他机器上不配置此项-->

<property>       

<name>yarn.resourcemanager.ha.id</name>

<value>rm1</value>

       <description>If we want to launch more than one RM in single node, we need this configuration</description>

</property>

   

   <!--用于持久存储的类。尝试开启-->

<property>

        <name>yarn.resourcemanager.store.class</name>

        <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>

</property>

<property>

        <name>yarn.resourcemanager.zk-address</name>

        <value>node2:2181,node3:2181,node1:2181</value>

        <description>For multiple zk services, separate them with comma</description>

</property>

<!--开启resourcemanager故障自动切换,指定机器--> 

<property>

        <name>yarn.resourcemanager.ha.automatic-failover.enabled</name>

        <value>true</value>

        <description>Enable automatic failover; By default, it is enabled only when HA is enabled.</description>

</property>

<property>

        <name>yarn.client.failover-proxy-provider</name>

        <value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider</value>

</property>

<!-- 允许分配给一个任务最大的CPU核数,默认是8 -->

<property>

        <name>yarn.nodemanager.resource.cpu-vcores</name>

        <value>2</value>

</property>

<!-- 每个节点可用内存,单位MB -->

<property>

        <name>yarn.nodemanager.resource.memory-mb</name>

        <value>2048</value>

</property>

<!-- 单个任务可申请最少内存,默认1024MB -->

<property>

        <name>yarn.scheduler.minimum-allocation-mb</name>

        <value>1024</value>

</property>

<!-- 单个任务可申请最大内存,默认8192MB -->

<property>

        <name>yarn.scheduler.maximum-allocation-mb</name>

        <value>2048</value>

</property>

<!--多长时间聚合删除一次日志 此处-->

<property>

        <name>yarn.log-aggregation.retain-seconds</name>

        <value>2592000</value><!--30 day-->

</property>

<!--时间在几秒钟内保留用户日志。只适用于如果日志聚合是禁用的-->

<property>

        <name>yarn.nodemanager.log.retain-seconds</name>

        <value>604800</value><!--7 day-->

</property>

<!--指定文件压缩类型用于压缩汇总日志-->

<property>

        <name>yarn.nodemanager.log-aggregation.compression-type</name>

        <value>gz</value>

</property>

<!-- nodemanager本地文件存储目录-->

<property>

        <name>yarn.nodemanager.local-dirs</name>

        <value>/opt/server/hadoop-2.7.5/yarn/local</value>

</property>

<!-- resourceManager  保存最大的任务完成个数 -->

<property>

        <name>yarn.resourcemanager.max-completed-applications</name>

        <value>1000</value>

</property>

<!-- 逗号隔开的服务列表,列表名称应该只包含a-zA-Z0-9_,不能以数字开始-->

<property>

        <name>yarn.nodemanager.aux-services</name>

        <value>mapreduce_shuffle</value>

</property>



<!--rm失联后重新链接的时间--> 

<property>

        <name>yarn.resourcemanager.connect.retry-interval.ms</name>

        <value>2000</value>

</property>

</configuration>

 

​​​​​​​修改mapred-site.xml

<configuration>

<!--指定运行mapreduce的环境是yarn -->

<property>

        <name>mapreduce.framework.name</name>

        <value>yarn</value>

</property>

<!-- MapReduce JobHistory Server IPC host:port -->

<property>

        <name>mapreduce.jobhistory.address</name>

        <value>node3:10020</value>

</property>

<!-- MapReduce JobHistory Server Web UI host:port -->

<property>

        <name>mapreduce.jobhistory.webapp.address</name>

        <value>node0:19888</value>

</property>

<!-- The directory where MapReduce stores control files.默认 ${hadoop.tmp.dir}/mapred/system -->

<property>

        <name>mapreduce.jobtracker.system.dir</name>

        <value>/opt/server/hadoop-2.7.5/data/system/jobtracker</value>

</property>

<!-- The amount of memory to request from the scheduler for each map task. 默认 1024-->

<property>

        <name>mapreduce.map.memory.mb</name>

        <value>1024</value>

</property>

<!-- <property>

                <name>mapreduce.map.java.opts</name>

                <value>-Xmx1024m</value>

        </property> -->

<!-- The amount of memory to request from the scheduler for each reduce task. 默认 1024-->

<property>

        <name>mapreduce.reduce.memory.mb</name>

        <value>1024</value>

</property>

<!-- <property>

               <name>mapreduce.reduce.java.opts</name>

               <value>-Xmx2048m</value>

        </property> -->

<!-- 用于存储文件的缓存内存的总数量,以兆字节为单位。默认情况下,分配给每个合并流1MB,给个合并流应该寻求最小化。默认值100-->

<property>

        <name>mapreduce.task.io.sort.mb</name>

        <value>100</value>

</property>

 

<!-- <property>

        <name>mapreduce.jobtracker.handler.count</name>

        <value>25</value>

        </property>-->

<!-- 整理文件时用于合并的流的数量。这决定了打开的文件句柄的数量。默认值10-->

<property>

        <name>mapreduce.task.io.sort.factor</name>

        <value>10</value>

</property>

<!-- 默认的并行传输量由reduce在copy(shuffle)阶段。默认值5-->

<property>

        <name>mapreduce.reduce.shuffle.parallelcopies</name>

        <value>15</value>

</property>

<property>

        <name>yarn.app.mapreduce.am.command-opts</name>

        <value>-Xmx1024m</value>

</property>

<!-- MR AppMaster所需的内存总量。默认值1536-->

<property>

        <name>yarn.app.mapreduce.am.resource.mb</name>

        <value>1536</value>

</property>

<!-- MapReduce存储中间数据文件的本地目录。目录不存在则被忽略。默认值${hadoop.tmp.dir}/mapred/local-->

<property>

        <name>mapreduce.cluster.local.dir</name>

        <value>/opt/server/hadoop-2.7.5/data/system/local</value>

</property>

</configuration>

 

​​​​​​​修改slaves

node1

node2

node3

 

​​​​​​​修改hadoop-env.sh

export JAVA_HOME=/export/server/jdk1.8.0_241

 

​​​​​​​集群启动过程

将第一台机器的安装包发送到其他机器上

第一台机器执行以下命令:

cd /opt/server

scp -r hadoop-2.7.5/ node2:$PWD

scp -r hadoop-2.7.5/ node3:$PWD

三台机器上共同创建目录

三台机器执行以下命令

mkdir -p /opt/server/hadoop-2.7.5/data/dfs/nn/name

mkdir -p /opt/server/hadoop-2.7.5/data/dfs/nn/edits

mkdir -p /opt/server/hadoop-2.7.5/data/dfs/nn/name

mkdir -p /opt/server/hadoop-2.7.5/data/dfs/nn/edits

更改node3的rm2

第二台机器执行以下命令

vim yarn-site.xml

 <!--在node2上配置rm1,在node3上配置rm2,注意:一般都喜欢把配置好的文件远程复制到其它机器上,

但这个在YARN的另一个机器上一定要修改,其他机器上不配置此项

 

注意我们现在有两个resourceManager   第二台是rm1 第三台是rm2

这个配置一定要记得去node3上面改好

-->

<property>       

<name>yarn.resourcemanager.ha.id</name>

<value>rm2</value>

   <description>If we want to launch more than one RM in single node, we need this configuration</description>

</property>

 

​​​​​​​启动HDFS过程

node1机器执行以下命令

cd   /opt/server/hadoop-2.7.5

bin/hdfs zkfc -formatZK

sbin/hadoop-daemons.sh start journalnode

bin/hdfs namenode -format

bin/hdfs namenode -initializeSharedEdits -force

sbin/start-dfs.sh

node2上面执行

cd   /opt/server/hadoop-2.7.5

bin/hdfs namenode -bootstrapStandby

sbin/hadoop-daemon.sh start namenode

 

​​​​​​​启动yarn过程

node2上执行

cd   /opt/server/hadoop-2.7.5

sbin/start-yarn.sh

node3上面执行

cd   /export/servers/hadoop-2.7.5

sbin/start-yarn.sh

 

​​​​​​​查看resourceManager状态

node2上面执行

cd   /opt/server/hadoop-2.7.5

bin/yarn rmadmin -getServiceState rm1

node3上面执行

cd   /opt/server/hadoop-2.7.5

bin/yarn rmadmin -getServiceState rm2

 

​​​​​​​node3启动jobHistory

node3机器执行以下命令启动jobHistory

cd /opt/server/hadoop-2.7.5

sbin/mr-jobhistory-daemon.sh start historyserver

 

​​​​​​​hdfs状态查看

node1机器查看hdfs状态

http://192.168.88.161:50070/dfshealth.html#tab-overview

node2机器查看hdfs状态

http://192.168.88.162:50070/dfshealth.html#tab-overview

 

​​​​​​​yarn集群访问查看

http://192.168.88.163:8088/cluster

 

​​​​​​​历史任务浏览界面

页面访问:

http://192.168.88.163:19888/jobhistory

以上是关于2021年大数据环境搭建:分布式环境搭建的主要内容,如果未能解决你的问题,请参考以下文章

2021年大数据Hadoop:全网最详细的Hadoop集群搭建

2021年大数据ZooKeeper:ZooKeeper集群搭建

2021年大数据Hadoop(十四):HDFS的高可用机制

2021年大数据Kafka:❤️Kafka的集群搭建以及shell启动命令脚本编写❤️

2021年大数据Kafka:❤️Kafka的集群搭建以及shell启动命令脚本编写❤️

2021年大数据常用语言Scala:Scala开发环境安装