使用Transformers端到端目标识别

Posted 人工智能博士

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用Transformers端到端目标识别相关的知识,希望对你有一定的参考价值。

点上方人工智能算法与Python大数据获取更多干货

在右上方 ··· 设为星标 ★,第一时间获取资源

仅做学术分享,如有侵权,联系删除

转载于 :网络

End-to-End Object Detection with Transformers

  • 作者:Nicolas Carion、Francisco Massa、Gabriel Synnaeve 等

  • 论文链接:https://arxiv.org/pdf/2005.12872v1.pdf

摘要:近年来,Transformer 成为了深度学习领域非常受欢迎的一种架构,它依赖于一种简单但却十分强大的机制——注意力机制,使得 AI 模型有选择地聚焦于输入的某些部分,因此推理更加高效。Transformer 已经广泛应用于序列数据的处理,尤其是在语言建模、机器翻译等自然语言处理领域。此外,它在语音识别、符号数学、强化学习等多个领域也有应用。但令人意外的是,计算机视觉领域一直还未被 Transformer 所席卷。

为了填补这一空白,Facebook AI 的研究者推出了 Transformer 的视觉版本—Detection Transformer(以下简称 DETR),用于目标检测和全景分割。与之前的目标检测系统相比,DETR 的架构进行了根本上的改变。这是第一个将 Transformer 成功整合为检测 pipeline 中心构建块的目标检测框架。在性能上,DETR 可以媲美当前的 SOTA 方法,但架构得到了极大简化。

具体来说,研究者在 COCO 目标检测数据集上将 DETR 与 Faster R-CNN 基线方法进行了对比,结果发现 DETR 在大型目标上的检测性能要优于 Faster R-CNN,但在小目标的检测上性能不如后者,这为今后 DETR 的改进提供了新的方向。

DETR 通过将一个常见 CNN 与 Transformer 结合来直接预测最终的检测结果。在训练期间,二分匹配(bipartite matching)向预测结果分配唯一的 ground truth 边界框。没有匹配的预测应生成一个「无目标」的分类预测结果。

传统两阶段检测系统,如 Faster R-CNN,通过对大量粗糙候选区域的过滤来预测目标边界框。与之相比,DETR 利用标准 Transformer 架构来执行传统上特定于目标检测的操作,从而简化了检测 pipeline。

在 COCO 验证集上与 Faster R-CNN 的对比结果。

DETR-R101 处理的全景分割效果。

---------♥---------

声明:本内容来源网络,版权属于原作者

图片来源网络,不代表本公众号立场。如有侵权,联系删除

AI博士私人微信,还有少量空位

如何画出漂亮的深度学习模型图?

如何画出漂亮的神经网络图?

一文读懂深度学习中的各种卷积

点个在看支持一下吧

以上是关于使用Transformers端到端目标识别的主要内容,如果未能解决你的问题,请参考以下文章

python 验证码识别端到端

python 验证码识别端到端

python 验证码识别端到端

Kaggle+SCF端到端验证码识别从训练到部署

(树莓派/OpenCV)端到端实时人脸识别实战

基于python语言的tensorflow的‘端到端’的字符型验证码识别源码整理(github源码分享)