HashMap

Posted 恒奇恒毅

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HashMap相关的知识,希望对你有一定的参考价值。

感谢传智播客老师深入细致的讲解

HashMap

1.HashMap简介

​ HashMap基于哈希表的Map接口实现,是以key-value存储形式存在,即主要用来存放键值对。HashMap 的实现不是同步的,这意味着它不是线程安全的。它的key、value都可以为null。此外,HashMap中的映射不是有序的。

​ JDK1.8 之前 HashMap 由 数组+链表 组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突**(两个对象调用的hashCode方法计算的哈希码值一致导致计算的数组索引值相同)**而存在的(“拉链法”解决冲突).JDK1.8 以后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(或者红黑树的边界值,默认为 8)并且当前数组的长度大于64时,此时此索引位置上的所有数据改为使用红黑树存储。

补充:将链表转换成红黑树前会判断,即使阈值大于8,但是数组长度小于64,此时并不会将链表变为红黑树。而是选择进行数组扩容。

这样做的目的是因为数组比较小,尽量避开红黑树结构,这种情况下变为红黑树结构,反而会降低效率,因为红黑树需要进行左旋,右旋,变色这些操作来保持平衡 。同时数组长度小于64时,搜索时间相对要快些。所以综上所述为了提高性能和减少搜索时间,底层在阈值大于8并且数组长度大于64时,链表才转换为红黑树。具体可以参考 treeifyBin方法。

当然虽然增了红黑树作为底层数据结构,结构变得复杂了,但是阈值大于8并且数组长度大于64时,链表转换为红黑树时,效率也变的更高效。

特点:

1.存取无序的

2.键和值位置都可以是null,但是键位置只能是一个null

3.键位置是唯一的,底层的数据结构控制键的

4.jdk1.8前数据结构是:链表 + 数组 jdk1.8之后是 : 链表 + 数组 + 红黑树

5.阈值(边界值) > 8 并且数组长度大于64,才将链表转换为红黑树,变为红黑树的目的是为了高效的查询。

2.HashMap集合底层的数据结构

2.1数据结构概念

在JDK1.8 之前 HashMap 由 数组+链表 数据结构组成的。

在JDK1.8 之后 HashMap 由 数组+链表 +红黑树数据结构组成的。

2.2HashMap底层的数据结构存储数据的过程

存储过程

1.面试题:HashMap中hash函数是怎么实现的?还有哪些hash函数的实现方式?

对于key的hashCode做hash操作,无符号右移16位然后做异或运算。
还有平方取中法,伪随机数法和取余数法。这三种效率都比较低。而无符号右移16位异或运算效率是最高的。至于底层是如何计算的我们下面看源码时给大家讲解。

2.面试题:当两个对象的hashCode相等时会怎么样?

会产生哈希碰撞,若key值内容相同则替换旧的value.不然连接到链表后面,链表长度超过阈值8且数组长度大于64的时候就转换为红黑树存储。

3.面试题:何时发生哈希碰撞和什么是哈希碰撞,如何解决哈希碰撞?

只要两个元素的key计算的哈希码值相同就会发生哈希碰撞。jdk8前使用链表解决哈希碰撞。jdk8之后使用链表+红黑树解决哈希碰撞。

4.面试题:如果两个键的hashcode相同,如何存储键值对?

hashcode相同,通过equals比较内容是否相同。
相同:则新的value覆盖之前的value
不相同:则将新的键值对添加到哈希表中

5.在不断的添加数据的过程中,会涉及到扩容问题,当超出临界值threshold(且要存放的位置非空)时,扩容。默认的扩容方式:扩容为原来容量的2倍,并将原有的数据复制过来

6.通过上述描述,当位于一个链表中的元素较多,即hash值相等但是内容不相等的元素较多时,通过key值依次查找的效率较低。而JDK1.8中,哈希表存储采用数组+链表+红黑树实现,当链表长度(阀值)超过 8 时且当前数组的长度 > 64时,将链表转换为红黑树,这样大大减少了查找时间。jdk8在哈希表中引入红黑树的原因只是为了查找效率更高。

简单的来说,哈希表是由数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的。如下图所示。

数组+链表+红黑树

但是这样的话问题来了,传统hashMap的缺点,1.8为什么引入红黑树?这样结构的话不是更麻烦了吗,为何阈值大于8换成红黑树?

JDK 1.8 以前 HashMap 的实现是 数组+链表,即使哈希函数取得再好,也很难达到元素百分百均匀分布。当 HashMap 中有大量的元素都存放到同一个桶中时,这个桶下有一条长长的链表,这个时候 HashMap 就相当于一个单链表,假如单链表有 n 个元素,遍历的时间复杂度就是 O(n),完全失去了它的优势。针对这种情况,JDK 1.8 中引入了 红黑树(查找时间复杂度为 O(logn))来优化这个问题。 当链表长度很小的时候,即使遍历,速度也非常快,但是当链表长度不断变长,肯定会对查询性能有一定的影响,所以才需要转成树。

至于为什么阈值是8,我想,去源码中找寻答案应该是最可靠的途径。 下面我们在分析源码的时候会介绍。

7.总结:

上述我们大概阐述了HashMap底层存储数据的方式。为了方便大家更好的理解,我们结合一个存储流程图来进一步说明一下:(jdk8存储过程)
在这里插入图片描述

说明:

1.size表示 HashMap中K-V的实时数量 , 注意这个不等于数组的长度 。

2.threshold( 临界值) =capacity(容量) * loadFactor( 加载因子 )。这个值是当前已占用数组长度的最大值。size超过这个临界值就重新resize(扩容),扩容后的 HashMap 容量是之前容量的两倍 。

3.HashMap继承关系

HashMap继承关系如下图所示:

继承关系

说明:

  • Cloneable 空接口,表示可以克隆。 创建并返回HashMap对象的一个副本。
  • Serializable 序列化接口。属于标记性接口。HashMap对象可以被序列化和反序列化。
  • AbstractMap 父类提供了Map实现接口。以最大限度地减少实现此接口所需的工作。

补充:通过上述继承关系我们发现一个很奇怪的现象, 就是HashMap已经继承了AbstractMap而AbstractMap类实现了Map接口,那为什么HashMap还要在实现Map接口呢?同样在ArrayList中LinkedList中都是这种结构。

据 java 集合框架的创始人Josh Bloch描述,这样的写法是一个失误。在java集合框架中,类似这样的写法很多,最开始写java集合框架的时候,他认为这样写,在某些地方可能是有价值的,直到他意识到错了。显然的,JDK的维护者,后来不认为这个小小的失误值得去修改,所以就这样存在下来了。

4.HashMap集合类的成员

4.1成员变量

1.序列化版本号

private static final long serialVersionUID = 362498820763181265L;

2.集合的初始化容量( 必须是二的n次幂 )

//默认的初始容量是16 -- 1<<4相当于1*2的4次方---1*16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;   

问题: 为什么必须是2的n次幂?如果输入值不是2的幂比如10会怎么样?

HashMap构造方法还可以指定集合的初始化容量大小:

HashMap(int initialCapacity) 构造一个带指定初始容量和默认加载因子 (0.75) 的空 HashMap。

根据上述讲解我们已经知道,当向HashMap中添加一个元素的时候,需要根据key的hash值,去确定其在数组中的具体位置。 HashMap为了存取高效,要尽量较少碰撞,就是要尽量把数据分配均匀,每个链表长度大致相同,这个实现就在把数据存到哪个链表中的算法。

这个算法实际就是取模,hash%length,计算机中直接求余效率不如位移运算(这点上述已经讲解)。所以源码中做了优化,使用 hash&(length-1),而实际上hash%length等于hash&(length-1)的前提是length是2的n次幂。

为什么这样能均匀分布减少碰撞呢?2的n次方实际就是1后面n个0,2的n次方-1 实际就是n个1;

举例:

说明:按位与运算:相同的二进制数位上,都是1的时候,结果为1,否则为零。

例如长度为8时候,3&(8-1)=3  2&(8-1)=2 ,不同位置上,不碰撞;
例如长度length为8时候,823次幂。二进制是:1000
length-1 二进制运算:
	1000
-	   1
---------------------
     111
如下所示:
hash&(length-1)
3   &(8    - 1)=3  
	00000011  3 hash
&   00000111  7 length-1
---------------------
	00000011-----3 数组下标
	
hash&(length-1)
2 &  (8 -    1) = 2  
	00000010  2 hash
&   00000111  7 length-1
---------------------
	00000010-----2  数组下标
说明:上述计算结果是不同位置上,不碰撞;
例如长度为9时候,3&(9-1)=0  2&(9-1)=0 ,都在0上,碰撞了;
例如长度length为9时候,9不是2的n次幂。二进制是:00001001
length-1 二进制运算:
	1001
-	   1
---------------------
    1000
如下所示:
hash&(length-1)
3   &(9    - 1)=0  
	00000011  3 hash
&   00001000  8 length-1 
---------------------
	00000000-----0  数组下标
	
hash&(length-1)
2 &  (9 -    1) = 2  
	00000010 2 hash
&   00001000 8 length-1 
---------------------
	00000000-----0  数组下标
说明:上述计算结果都在0上,碰撞了;

注意: 当然如果不考虑效率直接求余即可(就不需要要求长度必须是2的n次方了)

小结:

1.由上面可以看出,当我们根据key的hash确定其在数组的位置时,如果n为2的幂次方,可以保证数据的均匀插入,如果n不是2的幂次方,可能数组的一些位置永远不会插入数据,浪费数组的空间,加大hash冲突。

2.另一方面,一般我们可能会想通过 % 求余来确定位置,这样也可以,只不过性能不如 & 运算。而且当n是2的幂次方时:hash & (length - 1) == hash % length

3.因此,HashMap 容量为2次幂的原因,就是为了数据的的均匀分布,减少hash冲突,毕竟hash冲突越大,代表数组中一个链的长度越大,这样的话会降低hashmap的性能

4.如果创建HashMap对象时,输入的数组长度是10,不是2的幂,HashMap通过一通位移运算和或运算得到的肯定是2的幂次数,并且是离那个数最近的数字。

源代码如下:

//创建HashMap集合的对象,指定数组长度是10,不是2的幂
HashMap hashMap = new HashMap(10);
public HashMap(int initialCapacity) {//initialCapacity=10
   this(initialCapacity, DEFAULT_LOAD_FACTOR);
 }
public HashMap(int initialCapacity, float loadFactor) {//initialCapacity=10
     if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);//initialCapacity=10
}
  /**
   * Returns a power of two size for the given target capacity.
  */
    static final int tableSizeFor(int cap) {//int cap = 10
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

说明:

由此可以看到,当在实例化HashMap实例时,如果给定了initialCapacity(假设是10),由于HashMap的capacity必须都是2的幂,因此这个方法用于找到大于等于initialCapacity(假设是10)的最小的2的幂(initialCapacity如果就是2的幂,则返回的还是这个数)。
下面分析这个算法:
1)、首先,为什么要对cap做减1操作。int n = cap - 1;
这是为了防止,cap已经是2的幂。如果cap已经是2的幂, 又没有执行这个减1操作,则执行完后面的几条无符号右移操作之后,返回的capacity将是这个cap的2倍。如果不懂,要看完后面的几个无符号右移之后再回来看看。
下面看看这几个无符号右移操作:
2)、如果n这时为0了(经过了cap-1之后),则经过后面的几次无符号右移依然是0,最后返回的capacity是 1(最后有个n+1的操作)。
这里只讨论n不等于0的情况。

3)、注意:|(按位或运算):运算规则:相同的二进制数位上,都是0的时候,结果为0,否则为1。

第一次右移

int n = cap - 1;//cap=10  n=9
n |= n >>> 1;
	00000000 00000000 00000000 00001001 //9
|	
	00000000 00000000 00000000 00000100 //9右移之后变为4
-------------------------------------------------
	00000000 00000000 00000000 00001101 //按位异或之后是13

由于n不等于0,则n的二进制表示中总会有一bit为1,这时考虑最高位的1。通过无符号右移1位,则将最高位的1右移了1位,再做或操作,使得n的二进制表示中与最高位的1紧邻的右边一位也为1,如:

00000000 00000000 00000000 00001101

第二次右移

 n |= n >>> 2;//n通过第一次右移变为了:n=13
	00000000 00000000 00000000 00001101  // 13
|
    00000000 00000000 00000000 00000011  //13右移之后变为3
-------------------------------------------------
	00000000 00000000 00000000 00001111 //按位异或之后是15

注意,这个n已经经过了n |= n >>> 1; 操作。假设此时n为00000000 00000000 00000000 00001101 ,则n无符号右移两位,会将最高位两个连续的1右移两位,然后再与原来的n做或操作,这样n的二进制表示的高位中会有4个连续的1。如:

00000000 00000000 00000000 00001111 //按位异或之后是15

第三次右移 :

n |= n >>> 4;//n通过第一、二次右移变为了:n=15
	00000000 00000000 00000000 00001111  // 15
|
    00000000 00000000 00000000 00000000  //15右移之后变为0
-------------------------------------------------
	00000000 00000000 00000000 00001111 //按位异或之后是15

这次把已经有的高位中的连续的4个1,右移4位,再做或操作,这样n的二进制表示的高位中正常会有8个连续的1。如00001111 1111xxxxxx 。
以此类推
注意,容量最大也就是32bit的正数,因此最后n |= n >>> 16; ,最多也就32个1(但是这已经是负数了。在执行tableSizeFor之前,对initialCapacity做了判断,如果大于MAXIMUM_CAPACITY(2 ^ 30),则取MAXIMUM_CAPACITY。如果等于MAXIMUM_CAPACITY(2 ^ 30),会执行移位操作。所以这里面的移位操作之后,最大30个1,不会大于等于MAXIMUM_CAPACITY。30个1,加1之后得2 ^ 30) 。
请看下面的一个完整例子:
在这里插入图片描述

注意,得到的这个capacity却被赋值给了threshold。

this.threshold = tableSizeFor(initialCapacity);//initialCapacity=10

3.默认的负载因子,默认值是0.75

static final float DEFAULT_LOAD_FACTOR = 0.75f;

4.集合最大容量

//集合最大容量的上限是:2的30次幂
static final int MAXIMUM_CAPACITY = 1 << 30;

5.当链表的值超过8则会转红黑树(1.8新增)

 //当桶(bucket)上的结点数大于这个值时会转成红黑树
 static final int TREEIFY_THRESHOLD = 8;

问题:为什么Map桶中节点个数超过8才转为红黑树?

8这个阈值定义在HashMap中,针对这个成员变量,在源码的注释中只说明了8是bin(bin就是bucket(桶))从链表转成树的阈值,但是并没有说明为什么是8:

在HashMap中有一段注释说明: 我们继续往下看 :

Because TreeNodes are about twice the size of regular nodes, we use them only when bins contain enough nodes to warrant use (see TREEIFY_THRESHOLD). And when they become too small (due to removal or resizing) they are converted back to plain bins.  In usages with well-distributed user hashCodes, tree bins are rarely used.  Ideally, under random hashCodes, the frequency of nodes in bins follows a Poisson distribution
(http://en.wikipedia.org/wiki/Poisson_distribution) with a parameter of about 0.5 on average for the default resizing threshold of 0.75, although with a large variance because of resizing granularity. Ignoring variance, the expected occurrences of list size k are (exp(-0.5)*pow(0.5, k)/factorial(k)).
The first values are:
因为树节点的大小大约是普通节点的两倍,所以我们只在箱子包含足够的节点时才使用树节点(参见TREEIFY_THRESHOLD)。当它们变得太小(由于删除或调整大小)时,就会被转换回普通的桶。在使用分布良好的用户hashcode时,很少使用树箱。理想情况下,在随机哈希码下,箱子中节点的频率服从泊松分布
(http://en.wikipedia.org/wiki/Poisson_distribution),默认调整阈值为0.75,平均参数约为0.5,尽管由于调整粒度的差异很大。忽略方差,列表大小k的预期出现次数是(exp(-0.5)*pow(0.5, k)/factorial(k))。
第一个值是:

0:    0.60653066
1:    0.30326533
2:    0.07581633
3:    0.01263606
4:    0.00157952
5:    0.00015795
6:    0.00001316
7:    0.00000094
8:    0.00000006
more: less than 1 in ten million

TreeNodes占用空间是普通Nodes的两倍,所以只有当bin包含足够多的节点时才会转成TreeNodes,而是否足够多就是由TREEIFY_THRESHOLD的值决定的。当bin中节点数变少时,又会转成普通的bin。并且我们查看源码的时候发现,链表长度达到8就转成红黑树,当长度降到6就转成普通bin。

这样就解释了为什么不是一开始就将其转换为TreeNodes,而是需要一定节点数才转为TreeNodes,说白了就是权衡,空间和时间的权衡。

这段内容还说到:当hashCode离散性很好的时候,树型bin用到的概率非常小,因为数据均匀分布在每个bin中,几乎不会有bin中链表长度会达到阈值。但是在随机hashCode下,离散性可能会变差,然而JDK又不能阻止用户实现这种不好的hash算法,因此就可能导致不均匀的数据分布。不过理想情况下随机hashCode算法下所有bin中节点的分布频率会遵循泊松分布,我们可以看到,一个bin中链表长度达到8个元素的概率为0.00000006,几乎是不可能事件。所以,之所以选择8,不是随便决定的,而是根据概率统计决定的。由此可见,发展将近30年的Java每一项改动和优化都是非常严谨和科学的。

也就是说:选择8因为符合泊松分布,超过8的时候,概率已经非常小了,所以我们选择8这个数字。那也就是说其实转换为红黑树的概率是很小的。

补充:

1).

 Poisson分布(泊松分布),是一种统计与概率学里常见到的离散[概率分布]。
泊松分布的概率函数为:

泊松分布

 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。

2).另外一种解释供大家参考:

红黑树的平均查找长度是log(n),如果长度为8,平均查找长度为log(8)=3,链表的平均查找长度为n/2,当长度为8时,平均查找长度为8/2=4,这才有转换成树的必要;链表长度如果是小于等于66/2=3,而log(6)=2.6,虽然速度也很快的,但是转化为树结构和生成树的时间并不会太短。

6.当链表的值小于6则会从红黑树转回链表

 //当桶(bucket)上的结点数小于这个值时树转链表
 static final int UNTREEIFY_THRESHOLD = 6;

7.当Map里面的数量超过这个值时,表中的桶才能进行树形化 ,否则桶内元素太多时会扩容,而不是树形化 为了避免进行扩容、树形化选择的冲突,这个值不能小于 4 * TREEIFY_THRESHOLD (8)

//桶中结构转化为红黑树对应的数组长度最小的值 
static final int MIN_TREEIFY_CAPACITY = 64;

8、table用来初始化(必须是二的n次幂)(重点)

//存储元素的数组 
transient Node<K,V>[] table;

table在JDK1.8中我们了解到HashMap是由数组加链表加红黑树来组成的结构其中table就是HashMap中的数组,jdk8之前数组类型是Entry<K,V>类型。从jdk1.8之后是Node<K,V>类型。只是换了个名字,都实现了一样的接口:Map.Entry<K,V>。负责存储键值对数据的。

9、用来存放缓存

//存放具体元素的集合
transient Set<Map.Entry<K,V>> entrySet;

10、 HashMap中存放元素的个数(重点)

//存放元素的个数,注意这个不等于数组的长度。
 transient int size;

size为HashMap中K-V的实时数量,不是数组table的长度。

11、 用来记录HashMap的修改次数

// 每次扩容和更改map结构的计数器
 transient int modCount;  

12、 用来调整大小下一个容量的值计算方式为(容量*负载因子)

// 临界值 当实际大小(容量*负载因子)超过临界值时,会进行扩容
int threshold;

13、 哈希表的加载因子(重点)

// 加载因子
final float loadFactor;

说明:

1.loadFactor加载因子,是用来衡量 HashMap 满的程度,表示HashMap的疏密程度,影响hash操作到同一个数组位置的概率,计算HashMap的实时加载因子的方法为:size/capacity,而不是占用桶的数量去除以capacity。capacity 是桶的数量,也就是 table 的长度length。

loadFactor太大导致查找元素效率低,太小导致数组的利用率低,存放的数据会很分散。loadFactor的默认值为0.75f是官方给出的一个比较好的临界值

当HashMap里面容纳的元素已经达到HashMap数组长度的75%时,表示HashMap太挤了,需要扩容,而扩容这个过程涉及到 rehash、复制数据等操作,非常消耗性能。,所以开发中尽量减少扩容的次数,可以通过创建HashMap集合对象时指定初始容量来尽量避免。

同时在HashMap的构造器中可以定制loadFactor。

构造方法:
HashMap(int initialCapacity, float loadFactor) 构造一个带指定初始容量和加载因子的空 HashMap。

2.为什么加载因子设置为0.75,初始化临界值是12?

loadFactor越趋近于1,那么 数组中存放的数据(entry)也就越多,也就越密,也就是会让链表的长度增加,loadFactor越小,也就是趋近于0,数组中存放的数据(entry)也就越少,也就越稀疏。

在这里插入图片描述

如果希望链表尽可能少些。要提前扩容,有的数组空间有可能一直没有存储数据。加载因子尽可能小一些。

举例:

例如:加载因子是0.4。 那么16*0.4--->6 如果数组中满6个空间就扩容会造成数组利用率太低了。
	 加载因子是0.9。 那么16*0.9---->14 那么这样就会导致链表有点多了。导致查找元素效率低。

所以既兼顾数组利用率又考虑链表不要太多,经过大量测试0.75是最佳方案。

  • threshold计算公式:capacity(数组长度默认16) * loadFactor(负载因子默认0.75)。这个值是当前已占用数组长度的最大值。当Size>=threshold的时候,那么就要考虑对数组的resize(扩容),也就是说,这个的意思就是 衡量数组是否需要扩增的一个标准。 扩容后的 HashMap 容量是之前容量的两倍.

4.2构造方法

HashMap 中重要的构造方法,它们分别如下:

1、构造一个空的 HashMap ,默认初始容量(16)和默认负载因子(0.75)。

public HashMap() {
   this.loadFactor = DEFAULT_LOAD_FACTOR; // 将默认的加载因子0.75赋值给loadFactor,并没有创建数组
}

2、 构造一个具有指定的初始容量和默认负载因子(0.75) HashMap

 // 指定“容量大小”的构造函数
  public HashMap(int initialCapacity) {
      this(initialCapacity, DEFAULT_LOAD_FACTOR);
  }

3、 构造一个具有指定的初始容量和负载因子的 HashMap。我们来分析一下。

/*
	 指定“容量大小”和“加载因子”的构造函数
	 initialCapacity: 指定的容量
	 loadFactor:指定的加载因子
*/
public HashMap(int initialCapacity, float loadFactor) {
    	//判断初始化容量initialCapacity是否小于0
        if (initialCapacity < 0)
            //如果小于0,则抛出非法的参数异常IllegalArgumentException
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
    	//判断初始化容量initialCapacity是否大于集合的最大容量MAXIMUM_CAPACITY-》2的30次幂
        if (initialCapacity > MAXIMUM_CAPACITY)
            //如果超过MAXIMUM_CAPACITY,会将MAXIMUM_CAPACITY赋值给initialCapacity
            initialCapacity = MAXIMUM_CAPACITY;
    	//判断负载因子loadFactor是否小于等于0或者是否是一个非数值
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            //如果满足上述其中之一,则抛出非法的参数异常IllegalArgumentException
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
     	//将指定的加载因子赋值给HashMap成员变量的负载因子loadFactor
        this.loadFactor = loadFactor;
    	/*
    		tableSizeFor(initialCapacity) 判断指定的初始化容量是否是2的n次幂,如果不是那么会变为比指			定初始化容量大的最小的2的n次幂。这点上述已经讲解过。
    		但是注意,在tableSizeFor方法体内部将计算后的数据返回给调用这里了,并且直接赋值给threshold边			界值了。有些人会觉得这里是一个bug,应该这样书写:
    		this.threshold = tableSizeFor(initialCapacity) * this.loadFactor;
    		这样才符合threshold的意思(当HashMap的size到达threshold这个阈值时会扩容)。
			但是,请注意,在jdk8以后的构造方法中,并没有对table这个成员变量进行初始化,table的初始化被推			 迟到了put方法中,在put方法中会对threshold重新计算,put方法的具体实现我们下面会进行讲解
    	*/
        this.threshold = tableSizeFor(initialCapacity);
    }
最后调用了tableSizeFor,来看一下方法实现:
     /**
     * Returns a power of two size for the given target capacity.
       返回比指定初始化容量大的最小的2的n次幂
     */
    static final int tableSizeFor(int cap) {
        以上是关于HashMap的主要内容,如果未能解决你的问题,请参考以下文章

HashMap原理:哈希函数的设计

HashMap深度解析

JDK源码阅读之 HashMap

ArrayList 和 HashMap 的默认大小是多数?

如何将 Parcelable 与 HashMap 一起使用

hashmap冲突的解决方法以及原理分析: