ThreadLocal
Posted 恒奇恒毅
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ThreadLocal相关的知识,希望对你有一定的参考价值。
感谢传智播客老师深入细致的讲解
ThreadLocal
1. ThreadLocal介绍
1.1 官方介绍
/**
* This class provides thread-local variables. These variables differ from
* their normal counterparts in that each thread that accesses one (via its
* {@code get} or {@code set} method) has its own, independently initialized
* copy of the variable. {@code ThreadLocal} instances are typically private
* static fields in classes that wish to associate state with a thread (e.g.,
* a user ID or Transaction ID).
*
* <p>For example, the class below generates unique identifiers local to each
* thread.
* A thread's id is assigned the first time it invokes {@code ThreadId.get()}
* and remains unchanged on subsequent calls.
* <pre>
* import java.util.concurrent.atomic.AtomicInteger;
*
* public class ThreadId {
* // Atomic integer containing the next thread ID to be assigned
* private static final AtomicInteger nextId = new AtomicInteger(0);
*
* // Thread local variable containing each thread's ID
* private static final ThreadLocal<Integer> threadId =
* new ThreadLocal<Integer>() {
* @Override protected Integer initialValue() {
* return nextId.getAndIncrement();
* }
* };
*
* // Returns the current thread's unique ID, assigning it if necessary
* public static int get() {
* return threadId.get();
* }
* }
* </pre>
* <p>Each thread holds an implicit reference to its copy of a thread-local
* variable as long as the thread is alive and the {@code ThreadLocal}
* instance is accessible; after a thread goes away, all of its copies of
* thread-local instances are subject to garbage collection (unless other
* references to these copies exist).
*
* @author Josh Bloch and Doug Lea
* @since 1.2
*/
public class ThreadLocal<T> {
...
从Java官方文档中的描述:ThreadLocal类用来提供线程内部的局部变量。这种变量在多线程环境下访问(通过get和set方法访问)时能保证各个线程的变量相对独立于其他线程内的变量。ThreadLocal实例通常来说都是private static类型的,用于关联线程和线程上下文。
ThreadLocal 的作用是:提供线程内的局部变量,不同的线程之间不会相互干扰,这种变量在线程的生命周期内起作用,减少同一个线程内多个函数或组件之间一些公共变量传递的复杂度。
总结:
1. 线程并发: 在多线程并发的场景下
2. 传递数据: 我们可以通过ThreadLocal在同一线程,不同组件中传递公共变量
3. 线程隔离: 每个线程的变量都是独立的,不会相互影响
1.2 基本使用
1.2.1 常用方法
方法声明 | 描述 |
---|---|
ThreadLocal() | 创建ThreadLocal对象 |
public void set( T value) | 设置当前线程绑定的局部变量 |
public T get() | 获取当前线程绑定的局部变量 |
public void remove() | 移除当前线程绑定的局部变量 |
1.2.2 使用案例
public class MyDemo {
private String content;
private String getContent() {
return content;
}
private void setContent(String content) {
this.content = content;
}
public static void main(String[] args) {
MyDemo demo = new MyDemo();
for (int i = 0; i < 5; i++) {
Thread thread = new Thread(new Runnable() {
@Override
public void run() {
demo.setContent(Thread.currentThread().getName() + "的数据");
System.out.println("-----------------------");
System.out.println(Thread.currentThread().getName() + "--->" + demo.getContent());
}
});
thread.setName("线程" + i);
thread.start();
}
}
}
打印结果:
从结果可以看出多个线程在访问同一个变量的时候出现的异常,线程间的数据没有隔离。下面我们来看下采用 ThreadLocal 的方式来解决这个问题的例子。
public class MyDemo {
private static ThreadLocal<String> tl = new ThreadLocal<>();
private String content;
private String getContent() {
return tl.get();
}
private void setContent(String content) {
tl.set(content);
}
public static void main(String[] args) {
MyDemo demo = new MyDemo();
for (int i = 0; i < 5; i++) {
Thread thread = new Thread(new Runnable() {
@Override
public void run() {
demo.setContent(Thread.currentThread().getName() + "的数据");
System.out.println("-----------------------");
System.out.println(Thread.currentThread().getName() + "--->" + demo.getContent());
}
});
thread.setName("线程" + i);
thread.start();
}
}
}
打印结果:
从结果来看,这样很好的解决了多线程之间数据隔离的问题,十分方便。
1.3 ThreadLocal类与synchronized关键字
1.3.1 synchronized同步方式
我们完全可以通过加锁来实现这个功能。
public class Demo02 {
private String content;
public String getContent() {
return content;
}
public void setContent(String content) {
this.content = content;
}
public static void main(String[] args) {
Demo02 demo02 = new Demo02();
for (int i = 0; i < 5; i++) {
Thread t = new Thread(){
@Override
public void run() {
synchronized (Demo02.class){
demo02.setContent(Thread.currentThread().getName() + "的数据");
System.out.println("-------------------------------------");
String content = demo02.getContent();
System.out.println(Thread.currentThread().getName() + "--->" + content);
}
}
};
t.setName("线程" + i);
t.start();
}
}
}
打印结果:
从结果可以发现, 加锁确实可以解决这个问题,但是在这里我们强调的是线程数据隔离的问题,并不是多线程共享数据的问题, 在这个案例中使用synchronized关键字是不合适的。
1.3.2 ThreadLocal与synchronized的区别
虽然ThreadLocal模式与synchronized关键字都用于处理多线程并发访问变量的问题, 不过两者处理问题的角度和思路不同。
synchronized | ThreadLocal | |
---|---|---|
原理 | 同步机制采用’以时间换空间’的方式, 只提供了一份变量,让不同的线程排队访问 | ThreadLocal采用’以空间换时间’的方式, 为每一个线程都提供了一份变量的副本,从而实现同时访问而相不干扰 |
侧重点 | 多个线程之间访问资源的同步性 | 多线程中让每个线程之间的数据相互隔离 |
总结: 虽然使用ThreadLocal和synchronized都能解决问题,但是使用ThreadLocal更为合适,因为这样可以使程序拥有更高的并发性。
2. 运用场景_事务案例
ThreadLocal具体的应用是在哪里呢?一个ThreadLocal的经典运用场景: 事务。
(1) JDBC中关于事务的操作的api
Connection接口的方法 | 作用 |
---|---|
void setAutoCommit(false) | 禁用事务自动提交(改为手动) |
void commit(); | 提交事务 |
void rollback(); | 回滚事务 |
(2) 开启事务的注意点:
-
为了保证所有的操作在一个事务中,使用的连接必须是同一个: service层开启事务的connection需要跟dao层访问数据库的connection保持一致
-
线程并发情况下, 每个线程只能操作各自的 connection
2.2 常规解决方案
2.2.1 常规方案的实现
- 从service层将connection对象向dao层传递
- 加锁
2.2.2 常规方案的弊端
这样实现的弊端:
-
直接从service层传递connection到dao层, 造成代码耦合度提高
-
加锁会造成线程失去并发性,程序性能降低
2.3 ThreadLocal解决方案
2.3.1 ThreadLocal方案的实现
像这种需要在项目中进行数据传递和线程隔离的场景,我们不妨用ThreadLocal来解决,将获取到的Connection放入ThreadLocal中,后续相同线程获取的Connection肯定都是这个,不仅安全而且高效。
2.3.2 ThreadLocal方案的好处
从上述的案例中我们可以看到, 在一些特定场景下,ThreadLocal方案有两个突出的优势:
-
传递数据 : 保存每个线程绑定的数据,在需要的地方可以直接获取, 避免参数直接传递带来的代码耦合问题
-
线程隔离 : 各线程之间的数据相互隔离却又具备并发性,避免同步方式带来的性能损失
另外一个ThreadLocal的经典场景是token登录验证后获取用户信息,可以进此用户信息保存在ThreadLocal中。
3. ThreadLocal的内部结构
下面看一下ThreadLocal的内部结构,探究它能够实现线程数据隔离的原理。
3.1 常见的误解
通常,如果我们不去看源代码的话,我猜ThreadLocal
是这样子设计的:每个ThreadLocal
类都创建一个Map
,然后用线程的ID threadID
作为Map
的key
,要存储的局部变量作为Map
的value
,这样就能达到各个线程的局部变量隔离的效果。这是最简单的设计方法,JDK最早期的ThreadLocal
就是这样设计的。
3.2 核心结构
但是,JDK后面优化了设计方案,现时JDK8 ThreadLocal
的设计是:每个Thread
维护一个ThreadLocalMap
哈希表,这个哈希表的key
是ThreadLocal
实例本身,value
才是真正要存储的值Object
。
(1) 每个Thread线程内部都有一个Map (ThreadLocalMap)
(2) Map里面存储ThreadLocal对象(key)和线程的变量副本(value)
(3)Thread内部的Map是由ThreadLocal维护的,由ThreadLocal负责向map获取和设置线程的变量值。
(4)对于不同的线程,每次获取副本值时,别的线程并不能获取到当前线程的副本值,形成了副本的隔离,互不干扰。
3.3 这样设计的好处
这个设计与我们一开始说的设计刚好相反,这样设计有如下两个优势:
(1) 这样设计之后每个Map
存储的Entry
数量就会变少,因为之前的存储数量由Thread
的数量决定,现在是由ThreadLocal
的数量决定,一般情况下ThreadLocal的数量是远远小于线程数量的。
(2) 当Thread
销毁之后,对应的ThreadLocalMap
也会随之销毁,能减少内存的使用。
4. ThreadLocal的核心方法源码
基于ThreadLocal的内部结构,我们继续探究一下ThreadLocal的核心方法源码,更深入的了解其操作原理。
除了构造之外, ThreadLocal对外暴露的方法有以下4个:
方法声明 | 描述 |
---|---|
protected T initialValue() | 返回当前线程局部变量的初始值 |
public void set( T value) | 设置当前线程绑定的局部变量 |
public T get() | 获取当前线程绑定的局部变量 |
public void remove() | 移除当前线程绑定的局部变量 |
其实get,set和remove逻辑是比较相似的,我们要研究清楚其中一个,其他也就明白了。
4.1 get方法
(1 ) 源码和对应的中文注释
/**
* 返回当前线程中保存ThreadLocal的值
* 如果当前线程没有此ThreadLocal变量,
* 则它会通过调用{@link #initialValue} 方法进行初始化值
*
* @return 返回当前线程对应此ThreadLocal的值
*/
public T get() {
// 获取当前线程对象
Thread t = Thread.currentThread();
// 获取此线程对象中维护的ThreadLocalMap对象
ThreadLocalMap map = getMap(t);
// 如果此map存在
if (map != null) {
// 以当前的ThreadLocal 为 key,调用getEntry获取对应的存储实体e
ThreadLocalMap.Entry e = map.getEntry(this);
// 找到对应的存储实体 e
if (e != null) {
@SuppressWarnings("unchecked")
// 获取存储实体 e 对应的 value值
// 即为我们想要的当前线程对应此ThreadLocal的值
T result = (T)e.value;
return result;
}
}
// 如果map不存在,则证明此线程没有维护的ThreadLocalMap对象
// 调用setInitialValue进行初始化
return setInitialValue();
}
/**
* set的变样实现,用于初始化值initialValue,
* 用于代替防止用户重写set()方法
*
* @return the initial value 初始化后的值
*/
private T setInitialValue() {
// 调用initialValue获取初始化的值
T value = initialValue();
// 获取当前线程对象
Thread t = Thread.currentThread();
// 获取此线程对象中维护的ThreadLocalMap对象
ThreadLocalMap map = getMap(t);
// 如果此map存在
if (map != null)
// 存在则调用map.set设置此实体entry
map.set(this, value);
else
// 1)当前线程Thread 不存在ThreadLocalMap对象
// 2)则调用createMap进行ThreadLocalMap对象的初始化
// 3)并将此实体entry作为第一个值存放至ThreadLocalMap中
createMap(t, value);
// 返回设置的值value
return value;
}
/**
* 获取当前线程Thread对应维护的ThreadLocalMap
*
* @param t the current thread 当前线程
* @return the map 对应维护的ThreadLocalMap
*/
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
/**
*创建当前线程Thread对应维护的ThreadLocalMap
*
* @param t 当前线程
* @param firstValue 存放到map中第一个entry的值
*/
void createMap(Thread t, T firstValue) {
//这里的this是调用此方法的threadLocal
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
(2 ) 代码执行流程
A. 首先获取当前线程
B. 根据当前线程获取一个Map
C. 如果获取的Map不为空,则在Map中以ThreadLocal的引用作为key来在Map中获取对应的value e,否则转到E
D. 如果e不为null,则返回e.value,否则转到E
E. Map为空或者e为空,则通过initialValue函数获取初始值value,然后用ThreadLocal的引用和value作为firstKey和firstValue创建一个新的Map
总结: 先获取当前线程的 ThreadLocalMap 变量,如果存在则返回值,不存在则创建并返回初始值。
4.2 set方法
(1 ) 源码和对应的中文注释
/**
* 设置当前线程对应的ThreadLocal的值
*
* @param value 将要保存在当前线程对应的ThreadLocal的值
*/
public void set(T value) {
// 获取当前线程对象
Thread t = Thread.currentThread();
// 获取此线程对象中维护的ThreadLocalMap对象
ThreadLocalMap map = getMap(t);
// 如果此map存在
if (map != null)
// 存在则调用map.set设置此实体entry
map.set(this, value);
else
// 1)当前线程Thread 不存在ThreadLocalMap对象
// 2)则调用createMap进行ThreadLocalMap对象的初始化
// 3)并将此实体entry作为第一个值存放至ThreadLocalMap中
createMap(t, value);
}
(2 ) 代码执行流程
A. 首先获取当前线程,并根据当前线程获取一个Map
B. 如果获取的Map不为空,则将参数设置到Map中(当前ThreadLocal的引用作为key)
C. 如果Map为空,则给该线程创建 Map,并设置初始值
4.3 remove方法
(1 ) 源码和对应的中文注释
/**
* 删除当前线程中保存的ThreadLocal对应的实体entry
*/
public void remove() {
// 获取当前线程对象中维护的ThreadLocalMap对象
ThreadLocalMap m = getMap(Thread.currentThread());
// 如果此map存在
if (m != null)
// 存在则调用map.remove
// 以当前ThreadLocal为key删除对应的实体entry
m.remove(this);
}
(2 ) 代码执行流程
A. 首先获取当前线程,并根据当前线程获取一个Map
B. 如果获取的Map不为空,则移除当前ThreadLocal对象对应的entry
4.4 initialValue方法
/**
* 返回当前线程对应的ThreadLocal的初始值
* 此方法的第一次调用发生在,当线程通过{@link #get}方法访问此线程的ThreadLocal值时
* 除非线程先调用了 {@link #set}方法,在这种情况下,
* {@code initialValue} 才不会被这个线程调用。
* 通常情况下,每个线程最多调用一次这个方法。
*
* <p>这个方法仅仅简单的返回null {@code null};
* 如果程序员想ThreadLocal线程局部变量有一个除null以外的初始值,
* 必须通过子类继承{@code ThreadLocal} 的方式去重写此方法
* 通常, 可以通过匿名内部类的方式实现
*
* @return 当前ThreadLocal的初始值
*/
protected T initialValue() {
return null;
}
此方法的作用是 返回该线程局部变量的初始值。
(1) 这个方法是一个延迟调用方法,从上面的代码我们得知,在set方法还未调用而先调用了get方法时才执行,并且仅执行1次。
(2)这个方法缺省实现直接返回一个null
。
(3)如果想要一个除null之外的初始值,可以重写此方法。(备注: 该方法是一个protected
的方法,显然是为了让子类覆盖而设计的)
5. ThreadLocalMap源码分析
5.1 基本结构
ThreadLocalMap是ThreadLocal的内部类,没有实现Map接口,用独立的方式实现了Map的功能,其内部的Entry也是独立实现。
(1) 成员变量
/**
* 初始容量 —— 必须是2的整次幂
*/
private static final int INITIAL_CAPACITY = 16;
/**
* 存放数据的table,Entry类的定义在下面分析
* 同样,数组长度必须是2的冥。
*/
private Entry[] table;
/**
* 数组里面entrys的个数,可以用于判断table当前使用量是否超过负因子。
*/
private int size = 0;
/**
* 进行扩容的阈值,表使用量大于它的时候进行扩容。
*/
private int threshold; // Default to 0
/**
* 阈值设置为长度的2/3
*/
private void setThreshold(int len) {
threshold = len * 2 / 3;
}
(2) 存储结构 - Entry
// 在ThreadLocalMap中,也是用Entry来保存K-V结构数据的。但是Entry中key只能是ThreadLocal对象,这点被Entry的构造方法已经限定死了
// 另外,Entry继承WeakReference,使用弱引用,可以将ThreadLocal对象的生命周期和线程生命周期解绑,持有对ThreadLocal的弱引用,可以使得ThreadLocal在没有其他强引用的时候被回收掉,这样可以避免因为线程得不到销毁导致ThreadLocal对象无法被回收
static class Entry extends WeakReference<ThreadLocal> {
/** The value associated with this ThreadLocal. */
Object value;
Entry(ThreadLocal k, Object v) {
super(k);
value = v;
}
}
ThreadLocal内存泄露与Entry是WeakReference有关吗
假设使用强引用
假设使用弱引用
事实上,如果使用后remove方法被调用,强引用和弱引用都是可以的。使用弱引用在ThreadLocalRef断开的情况下,如果Entry没被删除,可以将ThrealLocal实例GC掉,多一层保障。在ThreadLocalMap的getEntry和setEntry方法中,会对key为null(即ThrealLocal=null)的对value也置为null。也就避免了内存泄露。但是我们还是需要记住,使用后一定要remove掉。
内存泄露的发生跟ThreadLocal中的Entry是否是弱引用无关,其真正的原因如下
- 没有手动删除Entry
- CurrentThread还在运行,Map作为Thread的一个成员,其生命周期和线程一样长
由于Map作为Thread的一个成员,其生命周期和线程一样长,如果没有手动删除Entry,那么就会导致内存泄露。
5.2 hash冲突的解决
ThreadLocal使用的是自定义的ThreadLocalMap,接下来我们来探究一下ThreadLocalMap的hash冲突解决方式。
(1) 先回顾ThreadLocal的set() 方法
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocal.ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
ThreadLocal.ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocal.ThreadLocalMap(this, firstValue);
}
- 代码很简单,获取当前线程,并获取当前线程的ThreadLocalMap实例(从getMap(Thread t)中很容易看出来)。
- 如果获取到的map实例不为空,调用map.set()方法,否则调用构造函数 ThreadLocal.ThreadLocalMap(this, firstValue)实例化map。
可以看出来线程中的ThreadLocalMap使用的是延迟初始化,在第一次调用get()或者set()方法的时候才会进行初始化。
(2) 下面来看看构造函数ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue)
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
//初始化table
table = new ThreadLocal.ThreadLocalMap.Entry[INITIAL_CAPACITY];
//计算索引
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
//设置值
table[i] = new ThreadLocal.ThreadLocalMap.Entry(firstKey, firstValue);
size = 1;
//设置阈值
setThreshold(INITIAL_CAPACITY);
}
主要说一下计算索引,firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1)
。
- 关于
& (INITIAL_CAPACITY - 1)
,这是取模的一种方式,对于2的幂作为模数取模,用此代替%(2^n)
,这也就是为啥容量必须为2的冥,在这个地方也得到了解答。 - 关于
firstKey.threadLocalHashCode
:
private final int threadLocalHashCode = nextHashCode();
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
private static AtomicInteger nextHashCode = new AtomicInteger();
private static final int HASH_INCREMENT = 0x61c88647;
这里定义了一个AtomicInteger类型,每次获取当前值并加上HASH_INCREMENT,HASH_INCREMENT = 0x61c88647
,这个值和斐波那契散列
有关(这是一种乘数散列法,只不过这个乘数比较特殊,是32位整型上限2^32-1乘以黄金分割比例0.618…的值2654435769,用有符号整型表示就是-1640531527,去掉符号后16进制表示为0x61c88647),其主要目的就是为了让哈希码能均匀的分布在2的n次方的数组里, 也就是Entry[] table
中,这样做可以尽量避免hash冲突。
(3) ThreadLocalMap中的set()
ThreadLocalMap使用开发地址-线性探测法
来解决哈希冲突,线性探测法的地址增量di = 1, 2, … 其中,i为探测次数。该方法一次探测下一个地址,直到有空的地址后插入,若整个空间都找不到空余的地址,则产生溢出。假设当前table长度为16,也就是说如果计算出来key的hash值为14,如果table[14]上已经有值,并且其key与当前key不一致,那么就发生了hash冲突,这个时候将14加1得到15,取table[15]进行判断,这个时候如果还是冲突会回到0,取table[0],以此类推,直到可以插入。
按照上面的描述,可以把table看成一个环形数组
。
先看一下线性探测相关的代码,从中也可以看出来table实际是一个环:
/**
* 获取环形数组的下一个索引
*/
private static int nextIndex(int i, int len) {
return ((i + 1 < len) ? i + 1 : 0);
}
/**
* 获取环形数组的上一个索引
*/
private static int prevIndex(int i, int len) {
return ((i - 1 >= 0) ? i - 1 : len - 1);
}
ThreadLocalMap的set()代码如下:
private void set(ThreadLocal<?> key, Object value以上是关于ThreadLocal的主要内容,如果未能解决你的问题,请参考以下文章