E. Number Challenge(清晰地推式子)
Posted H-w-H
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了E. Number Challenge(清晰地推式子)相关的知识,希望对你有一定的参考价值。
E. Number Challenge
问题: ∑ i = 1 a ∑ j = 1 b ∑ k = 1 c d ( i j k ) \\sum_{i=1}^a\\sum_{j=1}^b\\sum_{k=1}^cd(ijk) ∑i=1a∑j=1b∑k=1cd(ijk), d ( n ) d(n) d(n)表示n的因子个数。
推式子:
∑
i
=
1
a
∑
j
=
1
b
∑
k
=
1
c
d
(
i
j
k
)
∑
i
=
1
a
∑
j
=
1
b
∑
k
=
1
c
∑
x
∣
i
∑
y
∣
j
∑
z
∣
k
[
g
c
d
(
x
,
y
)
=
1
]
[
g
c
d
(
y
,
z
)
=
1
]
[
g
c
d
(
x
,
z
)
=
1
]
∑
x
=
1
a
∑
y
=
1
b
∑
z
=
1
c
∑
i
=
1
a
∑
j
=
1
b
∑
k
=
1
c
∑
x
∣
i
∑
y
∣
j
∑
z
∣
k
[
g
c
d
(
x
,
y
)
=
1
]
[
g
c
d
(
y
,
z
)
=
1
]
[
g
c
d
(
x
,
z
)
=
1
]
∑
x
=
1
a
∑
y
=
1
b
∑
z
=
1
c
⌊
a
x
⌋
⌊
b
y
⌋
⌊
c
z
⌋
[
g
c
d
(
x
,
y
)
=
1
]
[
g
c
d
(
y
,
z
)
=
1
]
[
g
c
d
(
x
,
z
)
=
1
]
∑
x
=
1
a
∑
y
=
1
b
∑
z
=
1
c
⌊
a
x
⌋
⌊
b
y
⌋
⌊
c
z
⌋
∑
d
∣
g
c
d
(
x
,
y
)
μ
(
d
)
[
g
c
d
(
y
,
z
)
=
1
]
[
g
c
d
(
x
,
z
)
=
1
]
∑
d
=
1
m
i
n
(
a
,
b
)
∑
x
=
1
a
∑
y
=
1
b
∑
z
=
1
c
⌊
a
x
⌋
⌊
b
y
⌋
⌊
c
z
⌋
∑
d
∣
g
c
d
(
x
,
y
)
μ
(
d
)
[
g
c
d
(
y
,
z
)
=
1
]
[
g
c
d
(
x
,
z
)
=
1
]
∑
d
=
1
m
i
n
(
a
,
b
)
μ
(
d
)
∑
x
=
1
,
d
∣
x
a
∑
y
=
1
,
d
∣
y
b
∑
z
=
1
c
⌊
a
x
⌋
⌊
b
y
⌋
⌊
c
z
⌋
[
g
c
d
(
y
,
z
)
=
1
]
[
g
c
d
(
x
,
z
)
=
1
]
∑
d
=
1
m
i
n
(
a
,
b
)
μ
(
d
)
∑
x
=
1
⌊
a
d
⌋
∑
y
=
1
⌊
b
d
⌋
∑
z
=
1
c
⌊
a
d
x
⌋
⌊
b
d
y
⌋
⌊
c
z
⌋
[
g
c
d
(
y
,
z
)
=
1
]
[
g
c
d
(
x
,
z
)
=
1
]
∑
d
=
1
m
i
n
(
a
,
b
)
μ
(
d
)
∑
z
=
1
c
∑
x
=
1
⌊
a
d
⌋
[
g
c
d
(
x
,
z
)
=
1
]
⌊
a
d
x
⌋
∑
y
=
1
⌊
b
d
⌋
⌊
b
d
y
⌋
⌊
c
z
⌋
[
g
c
d
(
y
,
z
)
=
1
]
\\sum_{i=1}^a\\sum_{j=1}^b\\sum_{k=1}^cd(ijk)\\\\ \\sum_{i=1}^a\\sum_{j=1}^b\\sum_{k=1}^c\\sum_{x|i}\\sum_{y|j}\\sum_{z|k}[gcd(x,y)=1][gcd(y,z)=1][gcd(x,z)=1]\\\\ \\sum_{x=1}^a\\sum_{y=1}^b\\sum_{z=1}^c\\sum_{i=1}^a\\sum_{j=1}^b\\sum_{k=1}^c\\sum_{x|i}\\sum_{y|j}\\sum_{z|k}[gcd(x,y)=1][gcd(y,z)=1][gcd(x,z)=1]\\\\ \\sum_{x=1}^a\\sum_{y=1}^b\\sum_{z=1}^c\\lfloor\\frac ax\\rfloor\\lfloor\\frac by\\rfloor\\lfloor\\frac cz\\rfloor[gcd(x,y)=1][gcd(y,z)=1][gcd(x,z)=1]\\\\ \\sum_{x=1}^a\\sum_{y=1}^b\\sum_{z=1}^c\\lfloor\\frac ax\\rfloor\\lfloor\\frac by\\rfloor\\lfloor\\frac cz\\rfloor\\sum_{d|gcd(x,y)}\\mu(d)[gcd(y,z)=1][gcd(x,z)=1]\\\\ \\sum_{d=1}^{min(a,b)}\\sum_{x=1}^a\\sum_{y=1}^b\\sum_{z=1}^c\\lfloor\\frac ax\\rfloor\\lfloor\\frac by\\rfloor\\lfloor\\frac cz\\rfloor\\sum_{d|gcd(x,y)}\\mu(d)[gcd(y,z)=1][gcd(x,z)=1]\\\\ \\sum_{d=1}^{min(a,b)}\\mu(d)\\sum_{x=1,d|x}^a\\sum_{y=1,d|y}^b\\sum_{z=1}^c\\lfloor\\frac ax\\rfloor\\lfloor\\frac by\\rfloor\\lfloor\\frac cz\\rfloor[gcd(y,z)=1][gcd(x,z)=1]\\\\ \\sum_{d=1}^{min(a,b)}\\mu(d)\\sum_{x=1}^{\\lfloor\\frac ad\\rfloor}\\sum_{y=1}^{\\lfloor\\frac bd\\rfloor}\\sum_{z=1}^c\\lfloor\\frac a{dx}\\rfloor\\lfloor\\frac b{dy}\\rfloor\\lfloor\\frac cz\\rfloor[gcd(y,z)=1][gcd(x,z)=1]\\\\ \\sum_{d=1}^{min(a,b)}\\mu(d)\\sum_{z=1}^c\\sum_{x=1}^{\\lfloor\\frac ad\\rfloor}[gcd(x,z)=1]\\lfloor\\frac a{dx}\\rfloor\\sum_{y=1}^{\\lfloor\\frac bd\\rfloor}\\lfloor\\frac b{dy}\\rfloor\\lfloor\\frac cz\\rfloor[gcd(y,z)=1]\\\\
i=1∑aj=1∑bk=1∑cd(ijk)i=1∑aj=1∑bk=1∑cx∣i∑y∣j∑z∣k∑[gcd(x,y)=1][gcd(y,z)=1][gcd(x,z)=1]x=1∑ay=1∑bz=1∑ci=1∑aj=1∑bk=1∑cx∣i∑y∣j∑z∣k∑[gcd(x,y)=1][gcd(y,z)=1][gcd(x,z)=1]x=1∑ay=1∑bz=1∑c⌊xa⌋⌊yb⌋⌊zc⌋[gcd(x,y)=1][gcd(y,z)=1][gcd(x,z)=1]x=1∑ay=1∑bz=1∑c⌊xa⌋⌊y[HDOJ6172] Array Challenge(线性递推,黑科技)
Codeforces 235 E Number Challenge
codeforces 235E Number Challenge