大话数据结构C语言48 最短路径(弗洛伊德算法)
Posted 是CodeAllen
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大话数据结构C语言48 最短路径(弗洛伊德算法)相关的知识,希望对你有一定的参考价值。
欢迎关注我的公众号是【CodeAllen】,关注回复【1024】获取资源
程序员技术交流①群:736386324 ,程序员技术交流②群:371394777
迪杰特斯拉算法对比弗洛伊德算法
O(n^2) O(n^3)
可见前者是明显优于后者的
因为迪杰特斯拉算法求的是一个顶点到所有顶点的最短路径,但弗洛伊德算法是求所有顶点到所有顶点的最短路径。
弗洛伊德算法非常简洁优雅
弗洛伊德算法
弗洛伊德的核心思想是:对于网中的任意两个顶点(例如顶点 A 到顶点 B)来说,之间的最短路径不外乎有 2 种情况:
-
直接从顶点 A 到顶点 B 的弧的权值为顶点 A 到顶点 B 的最短路径;
-
从顶点 A 开始,经过若干个顶点,最终达到顶点 B,期间经过的弧的权值和为顶点 A 到顶点 B 的最短路径。
floyd.c
#define MAXVEX 9
#define INFINITY 65535
typedef int Pathmatirx[MAXVEX][MAXVEX];
typedef int ShortPathTable[MAXVEX][MAXVEX];
void ShortestPath_Floyd(MGraph G, Pathmatirx *P, ShortPathTable *D)
{
int v, w, k;
// 初始化D和P
for( v=0; v < G.numVertexes; v++ )
{
for( w=0; w < G.numVertexes; w++ )
{
(*D)[v][w] = G.matirx[v][w];
(*P)[v][w] = w;
}
}
// 优美的弗洛伊德算法
for( k=0; k < G.numVertexes; k++ )
{
for( v=0; v < G.numVertexes; v++ )
{
for( w=0; w < G.numVertexes; w++ )
{
if( (*D)[v][w] > (*D)[v][k] + (*D)[k][w] )
{
(*D)[v][w] = (*D)[v][k] + (*D)[k][w];
(*P)[v][w] = (*P)[v][k]; // 请思考:这里换成(*P)[k][w]可以吗?为什么?
}
}
}
}
}
以上是关于大话数据结构C语言48 最短路径(弗洛伊德算法)的主要内容,如果未能解决你的问题,请参考以下文章
数据结构与算法图最短路径算法 ( Floyed 算法 | 图最短路径算法使用场景 | 求解图中任意两个点之间的最短路径 | 邻接矩阵存储图数据 | 弗洛伊德算法总结 )