优化布局基于粒子群算法的充电站最优布局

Posted Matlab走起

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了优化布局基于粒子群算法的充电站最优布局相关的知识,希望对你有一定的参考价值。

 电动汽车未来大规模发展需要众多公共充电站服务,公共充电站应根据电动汽车分布进行合理布局。给出电动汽车分布的预测方法,采用基于排队论的充电机配置方法,提出公共充电站布 局最优规划的数学模型。采用与充电站布局有相似数学特点的 Voronoi图划分充电站服务区域,服务区内电动汽车考虑快充随机性,采用排队论 M/M/s模型,以电动汽车排队等候时间为标准确定充电站规模,建立公共充电站布局最优规划模型,​用粒子群算法求解。

clear all; clc; close all
%% 基础数据
bcs=[800 350
    400 350];
​
b=[150.7   140  30
246.3   84  30
263.7   172  20
402.8   120  25
543.4   125  20
644.8   118  30
768.0   85  15
789.7   147  15
905.7   67  15
920.2   126  15
188.4   248  5
276.8   252  10
376.8   248  10
471.0   242  10
559.3   235  10
669.5   229  15
765.1   225  10
836.1   225  10
934.7   195  10
179.7   305  15
231.9   323  7.5
311.6   300  15
389.8   303  7.5
478.2   300  10
576.7   292  10
673.8   285  10
768.0   313  10
872.3   310  15
934.7   245  20
978.1   330  15
195.6   384  12.5
297.1   375  15
394.1   381  15
413.0   345  7.5
556.4   360  2.5
586.9   363  15
681.1   348  15
211.6   461  15
217.4   528  20
311.6   465  10
413.0   455  25
501.4   448  25
588.3   456  5
617.3   430  5
691.2   419  15
778.2   395  15
883.9   376  15
253.6   572  5
346.3   575  25
443.4   555  25
528.9   538  20
628.9   512  15
710.0   509  5
734.7   475  5
912.9   448  30
268.1   656  30
504.3   620  15
652.1   580  10
750.6   565  10
843.4   540  10
949.1   523  10
1043.3   502  10];
​
na=1500; %电动汽车数量
​
alp=0.1;  
b(:,4)=round(alp.*b(:,3)./sum(b(:,3)).*na);%每个需求点平均负荷
%b(23,4)=37;  
​
​
ns=6;
​
mui=0.6;   
Nchz=round(mui.*sum(b(:,4))./ns);
​
​
bm=1.0e+003*[0.0086,0.0088;1.1734,0.0088;1.1734,0.7412;0.0086,0.7412;0.0086,0.0088];
​
​
BL=sqrt(8.2*1.0e6./((max(bm(:,1))-min(bm(:,1)))*(max(bm(:,2))-min(bm(:,2)))));%BL为图坐标与实际坐标的比例,为固定参数。
​
​
%划分成两个区域干嘛呢??????
Area2=1.0e+003 *[0.0086    0.0088
0.9377   -1.0860
0.3103    1.7040
0.0086    0.7412
0.0086    0.0088];
Area2=[Area2,2.*ones(size(Area2,1),1)];%size(Area2,1)=5 ones(5,1)=一个5*1数组
​
Area1=1.0e+003 *[0.9377   -1.0860
1.1734    0.0088
1.1734    0.7412
0.3103    1.7040
0.9377   -1.0860];
Area1=[Area1,1.*ones(size(Area2,1),1)];
​
vv=[Area1;Area2];  %10*3数组 
for k=1:size(bcs,1)%k=1:2
    Ai=find(vv(:,3)==k);%在vv的第三列查找等于k的元素返回索引值
    xx=vv(Ai,1);%横坐标,充电需求点负荷。。。等于k的点 列向量
    yy=vv(Ai,2);
    kk=convhull(xx,yy);%计算凸包,kk是一个列向量
    in=inpolygon(b(:,1),b(:,2),xx(kk),yy(kk));
    b(in,5)=k; 
end
%%
​
​
​
Ep=[];
​
for i=1:size(bcs,1)
    gb=b(b(:,5)==i,:); 
    Ep=[Ep;[sum(gb(:,4)),round(mui.*sum(gb(:,4))./ns),i]]; 
end
​
​
Tn=8;   %最优充电站数量
PopSize=20; %种群数量
MaxIter=400;   %迭代次数
c1s=2.5;   c2s=0.5;
c1e=0.5;   c2e=2.5;
w_start=0.9;   
w_end=0.4;     %惯性权重w取值范围
Iter=1;        
​
​
xmax=max(Area1(:,1)); xmin=min(Area1(:,1));
ymax=max(Area1(:,2)); ymin=min(Area1(:,2));
x = xmin + (xmax-xmin).*rand(Tn,PopSize);
y = ymin + (ymax-ymin).*rand(Tn,PopSize);
​
X=[x;y]; 
V=rand(Tn*2,PopSize);
Vmax=0.1*max((xmax-xmin),(ymax-ymin));  
inAr1=find(b(:,5)==1); 
bb=[b(inAr1,1:2),b(inAr1,4)]; 
for pk=1:1:PopSize
    [FX(pk),~,~,~,~,~,~,~,~,~]=VorCostCDEV(X(1:Tn,pk),X(Tn+1:end,pk),bb,bcs(1,:),BL); %计算适应值
end
PBest=X;
FPBest=FX;
[Fgbest,r]=min(FX);
Fm(Iter)=Fgbest;
CF=Fgbest;    
Best=X(:,r);  
FBest(Iter)=Fgbest;
FgNum=0;
while (Iter<=MaxIter)%粒子群算法
    Iter=Iter+1 %迭代次数
    w_now=((w_start-w_end)*(MaxIter-Iter)/MaxIter)+w_end;%惯性权重
        A=repmat(X(:,r),1,PopSize);    
    
    R1=rand(Tn*2,PopSize);
    R2=rand(Tn*2,PopSize);   
   
    c1=c1e+(c1s-c1e)*(1-acos(-2*Iter/(MaxIter+1)+1)/pi);
    c2=c2e+(c2s-c2e)*(1-acos(-2*Iter/(MaxIter+1)+1)/pi);
        
    
    V=w_now*V+c1*R1.*(PBest-X)+c2*R2.*(A-X); %粒子速度更新公式
    
   
    changeRows=V>Vmax;
    V(changeRows)=Vmax;
   
    changeRows=V<-Vmax;
    V(changeRows)=-Vmax;
    
    
    X=X+1.0*V;
​
  
   for pk=1:1:PopSize
       [FX(pk),~,~,~,~,~,~,~,~,~]=VorCostCDEV(X(1:Tn,pk),X(Tn+1:end,pk),bb,bcs(1,:),BL);
   end
​
    
    P=FX<FPBest;    
    FPBest(P)=FX(P);  
    PBest(:,P)=X(:,P); 
    
    [Fgbest,r]=min(FPBest);
    Fm(Iter)=Fgbest;        
    
    if Fgbest<CF 
        [FBest,gr]=min(FPBest);  
        Best=PBest(:,gr);    
        CF=Fgbest;  
        FgNum=0;
    else
        FgNum=FgNum+1; 
    end
    
    
    if FgNum>10    
        SubX=r;
        while SubX==r || SubX==0
            SubX=round(rand*(PopSize));
        end
        r=SubX;
        FgNum=0;
    end
    
end 
FBest  
Best  
Fm' 
x =Best(1:Tn);
y =Best(Tn+1:end);
[Fcost,CCS,fcs,ucs,NchI,Epc,CVT,CVTI,CDL,CDLI]=VorCostCDEV(x,y,bb,bcs(1,:),BL)
​
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%作图
figure(1)
a=imread('map1.png');
imshow(a);   
hold on
[vxT,vyT]=VoronoiT(bcs(:,1),bcs(:,2),0);   
plot(bcs(:,1),bcs(:,2),'ks','linewidth',12);
% plot(vxT,vyT,'k-','linewidth',3);   
​
plot(b(:,1),b(:,2),'k*','linewidth',1)   
plot(bm(:,1),bm(:,2),'k-','linewidth',1)  
​
for k=1:length(b(:,4))
    str=num2str(b(k,4));
    text(b(k,1)-15,b(k,2)+25,str,'FontSize',5,'color','black');
end
​
for k=1:size(bcs,1)
    str=num2str(k);
    text(bcs(k,1)+20,bcs(k,2),str,'FontSize',20,'color','red');
 end
axis equal
​
​
[vx,vy]=voronoi(x,y);
plot(x,y,'b^',vx,vy,'b-','linewidth',3); 
for k=1:length(x)
    str=num2str(k);
    text(x(k),y(k),str,'FontSize',20,'color','red');
 end
axis equal
vv=VoronoiArea([x,y],3);
​
bax=b(:,1:2);
for k=1:length(x)
    Ai=find(vv(:,3)==k);
    xx=vv(Ai,1);
    yy=vv(Ai,2);
    kk=convhull(xx,yy); 
    in=inpolygon(bax(:,1),bax(:,2),xx(kk),yy(kk));
    str=num2str(k);
    text(bax(in,1),bax(in,2),str,'FontSize',18,'color','blue');
end
axis([min(bm(:,1))-3 max(bm(:,1))+3 min(bm(:,2))-3 max(bm(:,2))+3])
​
figure(2)
Iter_t=1:1:MaxIter+1;
plot(Iter_t,Fm,'.-')

完整代码添加QQ1575304183

 

以上是关于优化布局基于粒子群算法的充电站最优布局的主要内容,如果未能解决你的问题,请参考以下文章

布局优化基于粒子群算法实现充电布点优化matlab源码

布局优化基于粒子群货物配装问题最优化matlab源码

布局优化基于粒子群算法的无线传感器网(WSN)覆盖优化Matlab源码

布局优化基于粒子群算法的无线传感器网(WSN)覆盖优化Matlab源码

优化覆盖基于matlab粒子群算法优化无人机编队布局求解车载网络通信覆盖优化问题含Matlab源码 2021期

优化选址基于matlab改进的粒子群算法求解充电桩选址优化问题含Matlab源码 1964期