leetcode 28. 实现 strStr()----KMP算法,朴素模式匹配算法----超万字长文详解

Posted 大忽悠爱忽悠

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了leetcode 28. 实现 strStr()----KMP算法,朴素模式匹配算法----超万字长文详解相关的知识,希望对你有一定的参考价值。

在这里插入图片描述
在这里插入图片描述
1.朴素模式匹配算法—调用库函数

class Solution {
public:
	int strStr(string haystack, string needle)
	{
		int hay = haystack.size();
		int nee = needle.size();
		if (hay >= nee)
		{
		      //当剩余匹配字符不足子串长度的时候,就肯定不会匹配成功了
			for (int i = 0; i <= hay - nee; i++)
			{
				if (haystack.compare(i, nee, needle, 0, nee) == 0)
					return i;
			}
		}
		return -1;
	}
};

在这里插入图片描述
注意:compare返回值

  • 字符串相等返回0
  • 大于返回正数
  • 小于返回负数

compare函数六种重载形式:

  • s2 比较s和s2
  • pos1,n1,s2 将s中从pos1开始的n1个字符与s2进行比较
  • pos1,n1,s2,pos2,n2 将s中从pos1开始的n1个字符与s2中从pos2开始的n2个字符进行比较
  • cp 比较s与cp指向的以空字符结尾的字符数组(c语言里面的char*字符串)
  • pos1,n1,cp 将s中从pos1开始的n1个字符与cp指向的以空字符结尾的字符数组进行比较
  • pos1,n1,cp,n2 将s中从pos1开始的n1个字符与指针cp指向的地址开始的n2个字符进行比较

2.非调用库函数的朴素模式匹配算法

class Solution {
public:
	int strStr(string haystack, string needle)
	{
		int hay = haystack.size();
		int nee = needle.size();
		if (hay >= nee)
		{
			//当剩余长度不足子串长度的1时候,必定无法匹配成功
			for (int i = 0; i + nee <= hay; ++i)
			{
				bool flag = true;//一旦子串匹配过程中出现失配现象,就设置标志为flase
				for (int j = 0; j < nee; ++j)
				{
					if (needle[j] != haystack[i + j])
					{
						//如果发生了失配,那么从主串下一个位置开始重新匹配
						flag = false;
						break;
					}
				}
				if (flag)
					return i;
			}
		}
		return -1;
	}
};

在这里插入图片描述
3.KMP算法—这里借鉴宫水三叶大佬的讲解
具体详情可以看原文
KMP 算法是一个快速查找匹配串的算法,它的作用其实就是本题问题:如何快速在「原字符串」中找到「匹配字符串」。
上述的朴素解法,不考虑剪枝的话复杂度是 O(m * n) 的,而 KMP 算法的复杂度为 O(m + n)。
KMP 之所以能够在 O(m + n)O(m+n) 复杂度内完成查找,是因为其能在「非完全匹配」的过程中提取到有效信息进行复用,以减少「重复匹配」的消耗。

1. 匹配过程

在模拟 KMP 匹配过程之前,我们先建立两个概念:

  • 前缀:对于字符串 abcxxxxefg,我们称 abc 属于 abcxxxxefg 的某个前缀。
  • 后缀:对于字符串 abcxxxxefg,我们称 efg 属于 abcxxxxefg 的某个后缀。

然后我们假设原串为 abeababeabf,匹配串为 abeabf:
在这里插入图片描述
我们可以先看看如果不使用 KMP,会如何进行匹配(不使用 substring 函数的情况下)。

首先在「原串」和「匹配串」分别各自有一个指针指向当前匹配的位置。

首次匹配的「发起点」是第一个字符 a。显然,后面的 abeab 都是匹配的,两个指针会同时往右移动(黑标)。

在都能匹配上 abeab 的部分,「朴素匹配」和「KMP」并无不同。

直到出现第一个不同的位置(红标):
在这里插入图片描述

在这里插入图片描述
接下来,正是「朴素匹配」和「KMP」出现不同的地方:

  • 先看下「朴素匹配」逻辑:
  • 将原串的指针移动至本次「发起点」的下一个位置(b 字符处);匹配串的指针移动至起始位置。
  • 尝试匹配,发现对不上,原串的指针会一直往后移动,直到能够与匹配串对上位置。
    在这里插入图片描述
  • 也就是说,对于「朴素匹配」而言,一旦匹配失败,将会将原串指针调整至下一个「发起点」,匹配串的指针调整至起始位置,然后重新尝试匹配。
  • 这也就不难理解为什么「朴素匹配」的复杂度是 O(m * n)O(m∗n) 了。

然后我们再看看「KMP 匹配」过程:
首先匹配串会检查之前已经匹配成功的部分中里是否存在相同的「前缀」和「后缀」。如果存在,则跳转到「前缀」的下一个位置继续往下匹配:
在这里插入图片描述
跳转到下一匹配位置后,尝试匹配,发现两个指针的字符对不上,并且此时匹配串指针前面不存在相同的「前缀」和「后缀」,这时候只能回到匹配串的起始位置重新开始:
在这里插入图片描述
到这里,你应该清楚 KMP 为什么相比于朴素解法更快:

  • 因为 KMP 利用已匹配部分中相同的「前缀」和「后缀」来加速下一次的匹配。
  • 因为 KMP 的原串指针不会进行回溯(没有朴素匹配中回到下一个「发起点」的过程)。

第一点很直观,也很好理解。
我们可以把重点放在第二点上,原串不回溯至「发起点」意味着什么?
其实是意味着:随着匹配过程的进行,原串指针的不断右移,我们本质上是在不断地在否决一些「不可能」的方案。

当我们的原串指针从 i 位置后移到 j 位置,不仅仅代表着「原串」下标范围为 [i,j) 的字符与「匹配串」匹配或者不匹配,更是在否决那些以「原串」下标范围为 [i,j) 为「匹配发起点」的子集。

2. 分析实现

到这里,就结束了吗?要开始动手实现上述匹配过程了吗?

我们可以先分析一下复杂度。如果严格按照上述解法的话,最坏情况下我们需要扫描整个原串,复杂度为 O(n)。同时在每一次匹配失败时,去检查已匹配部分的相同「前缀」和「后缀」,跳转到相应的位置,如果不匹配则再检查前面部分是否有相同「前缀」和「后缀」,再跳转到相应的位置 … 这部分的复杂度是 O(m^2),因此整体的复杂度是 O(n * m^2),而我们的朴素解法是 O(m * n)的。

说明还有一些性质我们没有利用到。

显然,扫描完整原串操作这一操作是不可避免的,我们可以优化的只能是「检查已匹配部分的相同前缀和后缀」这一过程

再进一步,我们检查「前缀」和「后缀」的目的其实是「为了确定匹配串中的下一段开始匹配的位置」,这样就不用去比较那些会产生失配的子集了。

同时我们发现,对于匹配串的任意一个位置而言,由该位置发起的下一个匹配点位置其实与原串无关

举个 🌰对于匹配串 abcabd 的字符 d 而言,由它发起的下一个匹配点跳转必然是字符 c 的位置。因为字符 d 位置的相同「前缀」和「后缀」字符 ab 的下一位置就是字符 c。

可见从匹配串某个位置跳转下一个匹配位置这一过程是与原串无关的,我们将这一过程称为找 next 点。

显然我们可以预处理出 next 数组,数组中每个位置的值就是该下标应该跳转的目标位置( next 点)。

当我们进行了这一步优化之后,复杂度是多少呢?

预处理 next 数组的复杂度未知,匹配过程最多扫描完整个原串,复杂度为 O(n)。

因此如果我们希望整个 KMP 过程是 O(m + n) 的话,那么我们需要在 O(m)的复杂度内预处理出 next数组。

所以我们的重点在于如何在 O(m) 复杂度内处理处 next 数组。

3. next 数组的构建

接下来,我们看看 next 数组是如何在 O(m)的复杂度内被预处理出来的。

假设有匹配串 aaabbab,我们来看看对应的 next 是如何被构建出来的。
我们在求next数组的时候要知道next数组对应下标存储的值意味着什么:

  • 数组中每个位置的值就是该下标应该跳转的目标位置( next 点)。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 这就是整个 next 数组的构建过程,时空复杂度均为 O(m)O(m)。
  • 至此整个 KMP 匹配过程复杂度是 O(m + n)O(m+n) 的。

如果上面的next数组推导过程没看懂,没得关系,下面引出另一位大佬(代码随想录)来清晰讲解next数组的来龙去脉
详情看原文
为什么一定要用前缀表—即next数组
这就是前缀表那为啥就能告诉我们上次匹配的位置,并跳过去呢?

回顾一下,刚刚匹配的过程在下标5的地方遇到不匹配,模式串是指向f,如图:
在这里插入图片描述
然后就找到了下标2,指向b,继续匹配:如图:
在这里插入图片描述
以下这句话,对于理解为什么使用前缀表可以告诉我们匹配失败之后跳到哪里重新匹配 非常重要!
下标5之前这部分的字符串(也就是字符串aabaa)的最长相等的前缀 和 后缀字符串是 子字符串aa ,因为找到了最长相等的前缀和后缀,匹配失败的位置是后缀子串的后面,那么我们找到与其相同的前缀的后面从新匹配就可以了
所以前缀表具有告诉我们当前位置匹配失败,跳到之前已经匹配过的地方的能力。
很多介绍KMP的文章或者视频并没有把为什么要用前缀表?这个问题说清楚,而是直接默认使用前缀表。

如何计算前缀表

接下来就要说一说怎么计算前缀表。

如图:
在这里插入图片描述
长度为前1个字符的子串a,最长相同前后缀的长度为0。(注意字符串的前缀是指不包含最后一个字符的所有以第一个字符开头的连续子串;后缀是指不包含第一个字符的所有以最后一个字符结尾的连续子串。
在这里插入图片描述

长度为前2个字符的子串aa,最长相同前后缀的长度为1。
在这里插入图片描述
长度为前3个字符的子串aab,最长相同前后缀的长度为0。
以此类推:

  • 长度为前4个字符的子串aaba,最长相同前后缀的长度为1。
  • 长度为前5个字符的子串aabaa,最长相同前后缀的长度为2。
  • 长度为前6个字符的子串aabaaf,最长相同前后缀的长度为0。

那么把求得的最长相同前后缀的长度就是对应前缀表的元素,如图:
在这里插入图片描述
可以看出模式串与前缀表对应位置的数字表示的就是:下标i之前(包括i)的字符串中,有多大长度的相同前缀后缀。
再来看一下如何利用 前缀表找到 当字符不匹配的时候应该指针应该移动的位置。如图所示:
在这里插入图片描述
这里有跳跃,是从0下标开始依次匹配,到下标为5的地方产生了失配,即两个字符不相等
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
找到的不匹配的位置, 那么此时我们要看它的前一个字符的前缀表的数值是多少。

为什么要前一个字符的前缀表的数值呢,因为要找前面字符串的最长相同的前缀和后缀。

所以要看前一位的 前缀表的数值。

前一个字符的前缀表的数值是2, 所有把下标移动到下标2的位置继续比配。 可以再反复看一下上面的图片。

最后就在文本串中找到了和模式串匹配的子串了。

前缀表与next数组

很多KMP算法的时间都是使用next数组来做回退操作,那么next数组与前缀表有什么关系呢?

next数组就可以是前缀表,但是很多实现都是把前缀表统一减一(右移一位,初始位置为-1)之后作为next数组。

为什么这么做呢,其实也是很多文章视频没有解释清楚的地方。

其实这并不涉及到KMP的原理,而是具体实现,next数组即可以就是前缀表,也可以是前缀表统一减一(右移一位,初始位置为-1)。
后面我会提供两种不同的实现代码,大家就明白了了。

使用next数组来匹配

以下我们以前缀表统一减一之后的next数组来做演示。

有了next数组,就可以根据next数组来 匹配文本串s,和模式串t了。

注意next数组是新前缀表(旧前缀表统一减一了)。

匹配过程图如下:
这里我们之间移动到失配位置开始
在这里插入图片描述
这里与上面唯一区别就是当next数组对应移动位置为1时,模式串指针移动到next数组对应值加一的位置
在这里插入图片描述
下面就是从移动后的位置开始往后挨个匹配,然后匹配成功,与上面一样

构造next数组

我们定义一个函数getNext来构建next数组,函数参数为指向next数组的指针,和一个字符串。 代码如下:

void getNext(int* next, const string& s)

构造next数组其实就是计算模式串s,前缀表的过程。 主要有如下三步:

  1. 初始化
  2. 处理前后缀不相同的情况
  3. 处理前后缀相同的情况

接下来我们详解解释一下。
1. 初始化:
定义两个指针i和j,j指向前缀终止位置(严格来说是终止位置减一的位置)i指向后缀终止位置(与j同理)
然后还要对next数组进行初始化赋值,如下:

int j = -1;
next[0] = j;

j 为什么要初始化为 -1呢,因为之前说过 前缀表要统一减一的操作仅仅是其中的一种实现,我们这里选择j初始化为-1,下文我还会给出j不初始化为-1的实现代码。

next[i] 表示 i(包括i)之前最长相等的前后缀长度(其实就是j),所以初始化next[0] = j 。

2.处理前后缀不相同的情况
因为j初始化为-1,那么i就从1开始,进行s[i] 与 s[j+1]的比较。

所以遍历模式串s的循环下标i 要从 1开始,代码如下:

for(int i = 1; i < s.size(); i++) {}

如果 s[i] 与 s[j+1]不相同,也就是遇到 前后缀末尾不相同的情况,就要向前回溯。

怎么回溯呢?

next[j]就是记录着j(包括j)之前的子串的相同前后缀的长度。

那么 s[i] 与 s[j+1] 不相同,就要找 j+1前一个元素在next数组里的值(就是next[j])

所以,处理前后缀不相同的情况代码如下:

while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
    j = next[j]; // 向前回溯
}

3.处理前后缀相同的情况
如果s[i] 与 s[j + 1] 相同,那么就同时向后移动i 和j 说明找到了相同的前后缀,同时还要将j(前缀的长度)赋给next[i], 因为next[i]要记录相同前后缀的长度。

代码如下:

if (s[i] == s[j + 1]) { // 找到相同的前后缀
    j++;
}
next[i] = j;

最后整体构建next数组的函数代码如下:

void getNext(int* next, const string& s){
    int j = -1;
    next[0] = j;
    for(int i = 1; i < s.size(); i++) { // 注意i从1开始
        while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
            j = next[j]; // 向前回溯
        }
        if (s[i] == s[j + 1]) { // 找到相同的前后缀
            j++;
        }
        next[i] = j; // 将j(前缀的长度)赋给next[i]
    }
}

代码构造next数组的逻辑流程图如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
得到了next数组之后,就要用这个来做匹配了。

使用next数组来做匹配

在文本串s里 找是否出现过模式串t。

定义两个下标j 指向模式串起始位置,i指向文本串起始位置。

那么j初始值依然为-1,为什么呢? 依然因为next数组里记录的起始位置为-1

i就从0开始,遍历文本串,代码如下:

for (int i = 0; i < s.size(); i++) 

接下来就是 s[i] 与 t[j + 1] (因为j从-1开始的) 经行比较。如果 s[i] 与 t[j + 1] 不相同,j就要从next数组里寻找下一个匹配的位置。

while(j >= 0 && s[i] != t[j + 1]) {
    j = next[j];
}

如果 s[i] 与 t[j + 1] 相同,那么i 和 j 同时向后移动, 代码如下:

if (s[i] == t[j + 1]) {
    j++; // i的增加在for循环里
}

如何判断在文本串s里出现了模式串t呢,如果j指向了模式串t的末尾,那么就说明模式串t完全匹配文本串s里的某个子串了。

本题要在文本串字符串中找出模式串出现的第一个位置 (从0开始)所以返回当前在文本串匹配模式串的位置i 减去 模式串的长度,就是文本串字符串中出现模式串的第一个位置。

if (j == (t.size() - 1) ) {
    return (i - t.size() + 1);
}

那么使用next数组,用模式串匹配文本串的整体代码如下:

int j = -1; // 因为next数组里记录的起始位置为-1
for (int i = 0; i < s.size(); i++) { // 注意i就从0开始
    while(j >= 0 && s[i] != t[j + 1]) { // 不匹配
        j = next[j]; // j 寻找之前匹配的位置
    }
    if (s[i] == t[j + 1]) { // 匹配,j和i同时向后移动
        j++; // i的增加在for循环里
    }
    if (j == (t.size() - 1) ) { // 文本串s里出现了模式串t
        return (i - t.size() + 1);
    }
}

此时所有逻辑的代码都已经写出来了,本题整体代码如下:

前缀表统一减一 C++代码实现

class Solution {
public:
    void getNext(int* next, const string& s) {
        int j = -1;
        next[0] = j; //这里j的值就是前缀的长度
        for(int i = 1; i < s.size(); i++) { // 注意i从1开始
            while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
                j = next[j]; // 向前回溯
            }
            //这里j的初始值为-1,因此比较的时候要j+1
            if (s[i] == s[j + 1]) { // 找到相同的前后缀
                j++;
            }
            next[i] = j; // 将j(前缀的长度)赋给next[i]
        }
    }
    int strStr(string haystack, string needle) {
        if (needle.size() == 0) {
            return 0;
        }
     int* next=new int[needle.size()];
        getNext(next, needle);
        int j = -1; // // 因为next数组里记录的起始位置为-1
        for (int i = 0; i < haystack.size(); i++) { // 注意i就从0开始
            while(j >= 0 && haystack[i] != needle[j + 1]) { // 不匹配
                j = next[j]; // j 寻找之前匹配的位置
            }
            if (haystack[i] == needle[j + 1]) { // 匹配,j和i同时向后移动
                j++; // i的增加在for循环里
            }
            if (j == (needle.size() - 1) ) { // 文本串s里出现了模式串t
                return (i - needle.size() + 1);
            }
        }
        return -1;
    }
};

前缀表(不减一)C++实现

那么前缀表就不减一了,也不右移的,到底行不行呢?行!

我之前说过,这仅仅是KMP算法实现上的问题,如果就直接使用前缀表可以换一种回退方式,找j=next[j-1] 来进行回退。要就是j=next[x]这一步最为关键!

我给出的getNext的实现为:(前缀表统一减一)

void getNext(int* next, const string& s) {
    int j = -1;
    next[0] = j;
    for(int i = 1; i < s.size(); i++) { // 注意i从1开始
        while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
            j = next[j]; // 向前回溯
        }
        if (s[i] == s[j + 1]) { // 找到相同的前后缀
            j++;
        }
        next[i] = j; // 将j(前缀的长度)赋给next[i]
    }
}

此时如果输入的模式串为aabaaf,对应的next为-1 0 -1 0 1 -1
这里j和next[0]初始化为-1,整个next数组是以 前缀表减一之后的效果来构建的。

那么前缀表不减一来构建next数组,代码如下:

 void getNext(int* next, const string& s) {
        int j = 0;
        next[0] = 0;
        for(int i = 1; i < s.size(); i++) {
            while (j > 0 && s[i] != s[j]) { // j要保证大于0,因为下面有取j-1作为数组下标的操作
                j = next[j - 1]; // 注意这里,是要找前一位的对应的回退位置了
            }
            if (s[i] == s[j]) {

以上是关于leetcode 28. 实现 strStr()----KMP算法,朴素模式匹配算法----超万字长文详解的主要内容,如果未能解决你的问题,请参考以下文章

Leetcode 28 - 实现 strStr():问题

LeetCode 28 实现 strStr()

leetcode 28. Implement strStr() 实现strStr()

leetcode-----28. 实现 strStr()

LeetCode#28 | Implement strStr() 实现strStr()

python刷LeetCode:28. 实现 strStr()