使用Tensorflow训练BP神经网络实现鸢尾花分类

Posted 你,好

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用Tensorflow训练BP神经网络实现鸢尾花分类相关的知识,希望对你有一定的参考价值。

Hello,兄弟们,开始搞深度学习了,今天出第一篇博客,小白一枚,如果发现错误请及时指正,万分感谢。
在这里插入图片描述

使用软件

Python 3.8,Tensorflow2.0

问题描述

鸢尾花主要分为狗尾草鸢尾(0)、杂色鸢尾(1)、弗吉尼亚鸢尾(2)。
人们发现通过计算鸢尾花的花萼长、花萼宽、花瓣长、花瓣宽可以将鸢尾花分类。
所以只要给出足够多的鸢尾花花萼、花瓣数据,以及对应种类,使用合适的神经网络训练,就可以实现鸢尾花分类。

搭建神经网络

输入数据是花萼长、花萼宽、花瓣长、花瓣宽,是n行四列的矩阵。
而输出的是每个种类的概率,是n行三列的矩阵。
我们采用BP神经网络,设X为输入数据,Y为输出数据,W为权重,B偏置。有
y = x ∗ w + b y = x*w+b y=xw+b
因为x为n行四列的矩阵,y为n行三列的矩阵,所以w必须为四行三列的矩阵,每个神经元对应一个b,所以b为一行三列的的矩阵。
神经网络如下图。
在这里插入图片描述
所以,只要找到合适的w和b,就能准确判断鸢尾花的种类。
下面就开始对这两个参数进行训练。

训练参数

损失函数

损失函数表达的是预测值(y*)和真实值(y)的差距,我们采用均方误差公式作为损失函数。
M S E ( y , y ∗ ) = ∑ i = 0 n ( y − y ∗ ) 2 n = l o s s MSE(y, y*) = {\\sum_{i=0}^n (y-y*)^2 \\over n} = loss MSE(y,y)=ni=0n(yy)2=loss
损失函数值越小,说明预测值和真实值越接近,w和b就越合适。
如果人来一组一组试,那肯定是不行的。所以我们采用梯度下降算法来找到损失函数最小值。
梯度:对函数求偏导的向量。梯度下降的方向就是函数减少的方向。
w t + 1 = w t − a ∗ ∂ l o s s ∂ w b t + 1 = b t − a ∗ ∂ l o s s ∂ b w_{t+1} = w_t - a*\\frac{\\partial loss}{\\partial w} \\qquad b_{t+1} = b_t - a*\\frac{\\partial loss}{\\partial b} wt+1=wtawlossbt+1=btabloss
其中a为学习率,即梯度下降的步长,如果a太大,就可能错过最优值,如果a太小,则就需要更多步才能找到最优值。所以选择合适的学习率很关键。
在这里插入图片描述

参数优化

通过反向传播来优化参数。
反向传播:从后向前,逐层求损失函数对每层神经元参数的偏导数,迭代更新所有参数。
比如
l o s s = w 2 ∂ l o s s ∂ w = 2 w loss = w^2 \\qquad \\frac{\\partial loss}{\\partial w} = 2w loss=w2wloss=2w
初始化w为5,学习率a为0.3,带入 w t + 1 = w t − a ∗ ∂ l o s s ∂ w w_{t+1} = w_t - a*\\frac{\\partial loss}{\\partial w} wt+1=wtawloss

序号 w t w_t wt w t + 1 w_{t+1} wt+1
155-0.3*(2*5) = 2
222-0.3*(2*2) = 0.8
30.80.8-0.3*(2*0.8) = 0.32

可以看到w会逐渐趋向于loss的最小值0。
以上就是我们训练的全部关键点。

代码

数据集

我们使用sklearn包提供的鸢尾花数据集。共150组数据。
打乱保证数据的随机性,取前120个为训练集,后30个为测试集。

# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data ## 存花萼、花瓣特征数据
y_data = datasets.load_iris().target # 存对应种类
# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)
# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]
# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)
# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

参数

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1)) # 四行三列,方差为0.1
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1)) # 一行三列,方差为0.1

训练

a = 0.1  # 学习率为0.1
epoch = 500  # 循环500轮
# 训练部分
for epoch in range(epoch):  # 数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  # batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-y*)^2)
        # 计算loss对w, b的梯度
        grads = tape.gradient(loss, [w1, b1])
        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        w1.assign_sub(a * grads[0])  # 参数w1自更新
        b1.assign_sub(a * grads[1])  # 参数b自更新

测试

# 测试部分
total_correct, total_number = 0, 0
for x_test, y_test in test_db:
    # 前向传播求概率
    y = tf.matmul(x_test, w1) + b1
    y = tf.nn.softmax(y)
    predict = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
    # 将predict转换为y_test的数据类型
    predict = tf.cast(predict, dtype=y_test.dtype)
    # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
    correct = tf.cast(tf.equal(predict, y_test), dtype=tf.int32)
    # 将每个batch的correct数加起来
    correct = tf.reduce_sum(correct)
    # 将所有batch中的correct数加起来
    total_correct += int(correct)
    # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
    total_number += x_test.shape[0]
# 总的准确率等于total_correct/total_number
acc = total_correct / total_number
print("测试准确率 = %.2f %%" % (acc * 100.0))
my_test = np.array([[5.9, 3.0, 5.1, 1.8]])
print("输入 5.9  3.0  5.1  1.8")
my_test = tf.convert_to_tensor(my_test)
my_test = tf.cast(my_test, tf.float32)
y = tf.matmul(my_test, w1) + b1
y = tf.nn.softmax(y)
species = {0: "狗尾鸢尾", 1: "杂色鸢尾", 2: "弗吉尼亚鸢尾"}
predict = np.array(tf.argmax(y, axis=1))[0]  # 返回y中最大值的索引,即预测的分类
print("该鸢尾花为:" + species.get(predict))

结果:
在这里插入图片描述

结语

以上就是全部内容,鸢尾花分类作为经典案例,应该重点掌握理解。有一起学习的伙伴可以把想法打在评论区,大家多多交流,我也会及时回复的!
在这里插入图片描述

以上是关于使用Tensorflow训练BP神经网络实现鸢尾花分类的主要内容,如果未能解决你的问题,请参考以下文章

BP神经网络训练自己的数据(Tensorflow2.x版本)

BP神经网络训练自己的数据(Tensorflow2.x版本)

Tensorflow2.0使用神经网络实现鸢尾花分类的详细步骤

Tensorflow2.0使用神经网络实现鸢尾花分类的详细步骤

TensorFlow实现鸢尾花分类

TensorFlow实现鸢尾花分类