八大经典排序算法的理解动图演示和C++方法实现

Posted 非晚非晚

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了八大经典排序算法的理解动图演示和C++方法实现相关的知识,希望对你有一定的参考价值。

0. 排序算法概述

所谓排序,就是使一串序列,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。掌握基本排序方法是算法入门的必备基础知识。八种排序如下所示:

看到有文章说计数排序是稳定排序,实际上计数排序是重新赋值的,所以我的理解它应该属于不稳定排序。这里介绍的8种排序算法的基本情况,如下思维导图和表格所示:

排序算法平均时间复杂度最好情况最坏情况空间复杂度稳定性
冒泡排序 O ( n 2 ) O(n^2) O(n2) O ( n ) O(n) O(n) O ( n 2 ) O(n^2) O(n2) O ( 1 ) O(1) O(1)稳定
选择排序 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)O(1)$不稳定
插入排序 O ( n 2 ) O(n^2) O(n2) O ( n ) O(n) O(n) O ( n 2 ) O(n^2) O(n2) O ( n ) O(n) O(n)稳定
快速排序 O ( n   l o g   n ) O(n\\ log\\ n) O(n log n) O ( n   l o g   n ) O(n\\ log\\ n) O(n log n) O ( n 2 ) O(n^2) O(n2) O ( n   l o g   n ) O(n\\ log\\ n) O(n log n)不稳定
归并排序 O ( n   l o g   n ) O(n\\ log\\ n) O(n log n) O ( n   l o g   n ) O(n\\ log\\ n) O(n log n) O ( n   l o g   n ) O(n\\ log\\ n) O(n log n) O ( n ) O(n) O(n)稳定
计数排序 O ( n + k ) O(n + k) O(n+k) O ( n + k ) O(n + k) O(n+k) O ( n + k ) O(n + k) O(n+k) O ( k ) O(k) O(k)不稳定
希尔排序 O ( n   l o g   n ) O(n\\ log\\ n) O(n log n) O ( n   l o g 2   n ) O(n\\ log^2\\ n) O(n log2 n) O ( n   l o g 2   n ) O(n\\ log^2\\ n) O(n log2 n) O ( 1 ) O(1) O(1)不稳定
堆排序 O ( n   l o g   n ) O(n\\ log\\ n) O(n log n) O ( n   l o g   n ) O(n\\ log\\ n) O(n log n) O ( n   l o g   n ) O(n\\ log\\ n) O(n log n) O ( 1 ) O(1) O(1)不稳定

说明:排序算法的稳定性,指的是排序前后相同元素的相对位置不变,则称排序算法是稳定的;否则排序算法是不稳定的。

下面开始介绍各类算法的实现,例程全部是从小到大排序。

1. 冒泡排序

原理:它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。把最小的数浮上来,或者把最大的数据沉下去。
在这里插入图片描述

代码实现:

#include<iostream>
#include<vector>
using namespace std;
//这里实现的方式和图示略有不同
void bubbleSort(vector<int>&a){
    for(int i = 0; i < a.size(); i++)
        for(int j = i+1;j < a.size(); j++)
        {
            if(a[i] > a[j])
                swap(a[i],a[j]);
        }
}

int main()
{
    vector<int>a = {56, 7, 2, 67, 34, 26, 93, 3};
    cout<<"Before Sort: ";
    for(auto x : a)
        cout<<x<<", ";
    cout<<endl;
    bubbleSort(a);
    cout<<"After Sort: ";
    for(auto x : a)
        cout<<x<<", ";
    cout<<endl;
    return 1;
}

2. 选择排序

原理:选择排序和冒泡很像,它也是比较两个元素,不过它先不交换,等到选取最大或者最小的数据之后再进行交换。

在这里插入图片描述
代码实现:

#include<iostream>
#include<vector>
using namespace std;

void selectSort(vector<int>& a){
    for(int i = 0; i < a.size(); ++i){
        int minIndex = i;//记录最小索引
        for(int j = i; j < a.size(); ++j){
            if(a[j] < a[minIndex]) minIndex = j;
        }
        if( minIndex != i){
            swap(a[minIndex],a[i]);
        }
    }
}

int main()
{
    vector<int>a = {56, 7, 2, 67, 34, 26, 93, 3};
    cout<<"Before Sort: ";
    for(auto x : a)
        cout<<x<<", ";
    cout<<endl;
    selectSort(a);
    cout<<"After Sort: ";
    for(auto x : a)
        cout<<x<<", ";
    cout<<endl;
    return 1;
}

3. 插入排序

原理:从第二位数据开始, 当前数(第一趟是第二位数)与前面的数依次比较,如果前面的数大于当前数,则将这个数放在当前数的位置上,当前数的下标-1,直到当前数不大于前面的某一个数为止。直到遍历至最后一位元素。

通俗的讲,就是从第二位开始,更小的值往前插入。前面的数据肯定是插入排序已经排列好的,前面的值小于或等于当前值基准值的位置。
在这里插入图片描述
代码实现:

#include<iostream>
#include<vector>
using namespace std;

void insertSort(vector<int>&a){
    for(int i = 1; i < a.size(); ++i)//从第二位开始
    {
        int key = a[i];//记录插入的值
        int j = i-1;
        while( j >= 0 && a[j] > key ) {//每次都和基准key比较,最小值往前插
            a[j+1] = a[j];//后移
            j--;
        }
        a[j+1] = key;//插入操作
    }
}

int main()
{
    vector<int>a = {56, 7, 2, 67, 34, 26, 93, 3};
    cout<<"Before Sort: ";
    for(auto x : a)
        cout<<x<<", ";
    cout<<endl;
    insertSort(a);
    cout<<"After Sort: ";
    for(auto x : a)
        cout<<x<<", ";
    cout<<endl;
    return 1;
}

4. 快速排序

原理:通过一趟排序将序列分成左右两部分,其中左半部分的的值均比右半部分的值小,然后再分别对左右部分的记录进行排序,直到整个序列有序。
在这里插入图片描述

代码实现:

#include<iostream>
#include<vector>
using namespace std;
//partition为一趟排序
int partition(vector<int>&a,  int low, int high){
    int key = a[low];//获取基准,基准为low,所以一定要从high开始
    while( low < high ){
        while(low < high && a[high] >= key) high--;//右边查找
        a[low] = a[high];
        while(low < high && a[low] <= key) low++;//左边查找
        a[high] = a[low];
    }
    a[low] = key;//基准最后插入
    return low;
}

void quickSort(vector<int>&a, int low, int high){
    if(low >= high) return;
    int keypos = partition(a, low, high);//一次排序,keypos将数据分成左右两边
    quickSort(a, low, keypos-1);//递归
    quickSort(a, keypos+1, high);
}

int main()
{
    vector<int>a = {56, 7, 2, 67, 34, 26, 93, 3};
    cout<<"Before Sort: ";
    for(auto x : a)
        cout<<x<<", ";
    cout<<endl;
    quickSort(a,0,a.size() - 1);//分别指向两端的数据。
    cout<<"After Sort: ";
    for(auto x : a)
        cout<<x<<", ";
    cout<<endl;
    return 1;
}

5. 归并排序

归并排序是把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
在这里插入图片描述
实现代码:

#include<iostream>
#include<vector>
using namespace std;
void merge(vector<int>&a, int first, int mid, int last){
    int temp[last-first+1];
    int copyIndex = last - first;
    int i = mid, j = last;
    while( i>=first && j >= mid+1 ){
        if(a[i] > a[j]) temp[copyIndex--] = a[i--];
        else temp[copyIndex--] = a[j--];
    }
    while(i >

以上是关于八大经典排序算法的理解动图演示和C++方法实现的主要内容,如果未能解决你的问题,请参考以下文章

数据结构初阶第九篇——八大经典排序算法总结(图解+动图演示+代码实现+八大排序比较)

十大经典排序算法(上)

十大经典排序算法(上)

十大经典排序算法(上)

十大经典排序算法(上)

十大经典排序算法(上)