基于神经网络与支持向量机模型的隧道液化引起隆起位移预测

Posted UndergroundSpace期刊

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于神经网络与支持向量机模型的隧道液化引起隆起位移预测相关的知识,希望对你有一定的参考价值。

点击蓝字关注地下空间

基于神经网络与支持向量机模型的隧道液化引起隆起位移预测



Neural network and support vector machine models for the prediction of the liquefaction-induced uplift displacement of tunnels

基于神经网络与支持向量机模型的隧道液化引起隆起位移预测

Underground Space, Available online 9 January 2020

https://doi.org/10.1016/j.undsp.2019.12.002



基于神经网络与支持向量机模型的隧道液化引起隆起位移预测

Comparison between the results of the simulation and centrifuge measurements

模拟结果与离心试验结果对比



Authors

作者

Gang Zheng(a,b,c), Wenbin Zhang(a,b), Wengang Zhang(d), Haizuo Zhou(a,b,c✉*), Pengbo Yang(a,b)

a. School of Civil Engineering, Tianjin University, Tianjin 300072, China

b. Key Laboratory of Coast Civil Structure Safety, Tianjin University, Ministry of Education, Tianjin 300072, China

c. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China

d. National Joint Engineering Research Center of Geohazards Prevention in Reservoir Area Environment, School of Civil Engineering, Chongqing University, Chongqing 400045, China

zhzrobby@163.com


Abstract

摘要

Tunnels buried in liquefiable deposits are vulnerable to liquefaction-induced uplift damage during earthquakes. This paper presents support vector machine (SVM) and artificial neural network (ANN) models for predicting the liquefaction-induced uplift displacement of tunnels based on artificial databases generated by the finite difference method (FDM). The performance of the SVM and ANN models are assessed using statistical parameters, including the coefficient of determination (R2), the mean absolute error (MAE), and the root mean squared error (RMSE). The applications for the above-mentioned approach for predicting the uplift displacement of tunnels are compared and discussed. A relative importance analysis is adopted to quantify the sensitivity of each input variable. The precision of the presented models is demonstrated using the centrifuge test results available from previous studies.

在地震期间,埋于可液化沉积物中的隧道容易受到液化引起的隆起破坏。基于采用有限差分法(FDM)生成的人工数据库,本文提出了一个支持向量机(SVM)和人工神经网络(ANN)模型,以预测由于液化引起的隧道隆起位移。使用统计参数以评估SVM和ANN模型性能,包括决定系数(R2)、平均绝对误差(MAE)和均方根误差(RMSE)。对比讨论了上述方法在预测隧道隆起位移预测中的应用。采用相对重要性分析量化了每个输入变量的灵敏度。采用既有研究提供的离心试验结果验证了提出模型的精度。


Keywords

关键词

artificial neural network; support vector machine; liquefaction; uplift displacement

人工神经网络;支持向量机;液化;隆起位移




基于神经网络与支持向量机模型的隧道液化引起隆起位移预测

Underground Space

点击阅读原文查看文章详情


以上是关于基于神经网络与支持向量机模型的隧道液化引起隆起位移预测的主要内容,如果未能解决你的问题,请参考以下文章

ML-9-1支持向量机--软硬间隔与支持向量机

基于前馈神经网络和支持向量机分类器的叶片识别

学习深度学习之神经网络与支持向量机

主成分析与支持向量机的数字识别模型

支持向量机,带你跳出轮回?

新方法基于支持向量机综合分类模型和关键样本集的电力系统暂态稳定评估