WWW 2020关于深度推荐系统与CTR预估相关的论文

Posted 深度传送门

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了WWW 2020关于深度推荐系统与CTR预估相关的论文相关的知识,希望对你有一定的参考价值。

导读: 本文主要简要列举下Google、Facebook、Alibaba以及Tencent等各大公司在WWW 2020上关于深度推荐系统与CTR预估相关的论文。

1. Learning Multi-granular Quantized Embeddings for Large-Vocab Categorical Features in Recommender Systems Wang-Cheng Kang (UC San Diego), Derek Zhiyuan Cheng (Google), Ting Chen (Google), Xinyang Yi (Google), Dong Lin (Google), Lichan Hong (Google), Ed H. Chi (Google)


2. Adversarial Multimodal Representation Learning for Click-Through Rate Prediction Xiang Li (Alibaba Group), Chao Wang (Alibaba Group), Jiwei Tan (Alibaba Group), Xiaoyi Zeng (Alibaba Group), Dan Ou (Alibaba Group), Bo Zheng (Alibaba Group)

论文:https://arxiv.org/abs/2003.07162


3. Off-policy Learning in Two-stage Recommender Systems Jiaqi Ma (University of Michigan), Zhe Zhao (Google AI), Xinyang Yi (Google AI ), Ji Yang (Google AI), Minmin Chen (Google AI), Jiaxi Tang (Simon Fraser University), Lichan Hong (Google AI), Ed H. Chi (Google AI)


4. Hierarchical Adaptive Contextual Bandits for Resource Constraint based Recommendation Mengyue Yang (University of Chinese Academy of Sciences), Qingyang Li (Didi Chuxing), Zhiwei Qin (Didi Chuxing), Jieping Ye (Didi Chuxing)


5. Jointly Learning to Recommend and Advertise Xiangyu Zhao (Michigan State University), Xudong Zheng (Bytedance), Xiwang Yang (Bytedance), Xiaobing Liu (Bytedance), Jiliang Tang(Michigan State University)


6. Beyond Clicks: Modeling Multi-Relational Item Graph for Session-Based Target Behavior Prediction Wen Wang (East China Normal University), Wei Zhang (East China Normal University), Shukai Liu (Tencent), Qi Liu (Tencent), Bo Zhang (Tencent), Leyu Lin (Tencent), Hongyuan Zha (Georgia Institute of Technology)


7. Field-aware Calibration: A Simple and Empirically Strong Method for Reliable Probabilistic Predictions Feiyang Pan (Chinese Academy of Sciences), Xiang Ao (Chinese Academy of Sciences), Pingzhong Tang (Tsinghua University), Min Lu (Tencent), Dapeng Liu (Tencent), Lei Xiao (Tencent), Qing He (Chinese Academy of Sciences)


8. LightRec: a Memory and Search-Efficient Recommender System Defu Lian (University of Science and Technology of China) , Haoyu Wang (University at Buffalo) , Zheng Liu (Microsoft Research Asia) , Jianxun Lian (Microsoft Research Asia), Enhong Chen (University of Science and Technology of China) , Xing Xie (Microsoft Research Asia)


9. Efficient Neural Interaction Function Search for Collaborative Filtering Quanming Yao (4Paradigm Inc), Xiangning Chen (UCLA), James Kwok (HKUST), Yong Li (Tsinghua University), Cho-Jui Hsieh (UCLA)


本文中涉及到的所有论文以及更多最前沿的推荐广告方面的论文分享请移步如下的GitHub项目进行学习交流star以及fork,后续仓库会持续更新最新论文。

https://github.com/imsheridan/DeepRec


相关阅读:



关于深度传送门


深度传送门是一个专注于深度推荐系统与CTR预估的交流社区,传送推荐、广告以及NLP等相关领域工业界第一手的论文、资源等相关技术分享,欢迎关注!加技术交流群请添加小助手deepdeliver,备注姓名+学校/公司+方向。

你点的每个 “在看”,我都认真当成了喜欢

以上是关于WWW 2020关于深度推荐系统与CTR预估相关的论文的主要内容,如果未能解决你的问题,请参考以下文章

推荐系统遇上深度学习

CTR预估模型(与POI推荐关系)

深度CTR预估模型在应用宝推荐系统中的探索

深度学习推荐系统CTR预估工业界实战论文整理分享

推荐系统工程难题:如何做好深度学习CTR模型线上Serving

推荐系统工程师必看!Embedding技术在深度学习CTR模型中的应用