剖析 大数据流式计算场景特征
Posted 人工智能大家庭
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了剖析 大数据流式计算场景特征相关的知识,希望对你有一定的参考价值。
云计算、物联网等新兴信息技术和应用模式的快速发展,推动人类社会迈入大数据新时代。一般意义上,大数据是指利用现有理论、方法、技术和工具难以在可接受的时间内完成分析计算、整体呈现高价值的海量复杂数据集合。
大数据蕴含大信息,大信息提炼大知识,大知识将在更高的层面、以更广的视角、在更大的范围内帮助用户提高洞察力、提升决策力,为人类社会创造前所未有的大 价值。但与此同时,这些总量极大的价值往往隐藏在大数据中,表现出了价值密度极低、分布极其不规律、信息隐藏程度极深、发现有用价值极其困难等鲜明特性, 这些特征必然为大数据的计算带来前所未有的挑战和机遇。
大数据的计算模式主要分为批量计算(batch computing)、流式计算(stream computing)、交互计算(interactive computing)、图计算(graph computing)等。其中,流式计算和批量计算是两种主要的大数据计算模式,分别适用于不同的大数据应用场景。对于先存储后计算,实时性要求不高,同 时数据的准确性、全面性更为重要的应用场景,批量计算更加适合;对于无需先存储,可以直接进行数据计算,实时性要求很严格,但数据的精确度往往不太苛刻的 应用场景,流式计算具有明显优势。
流式计算中,数据往往是最近一个时间窗口内的增量数据,因此数据时延往往较短,实时性较强,但数据的信息量往往相对较少,只限于一个时间窗口内的信息,不 具有全量信息。流式计算和批量计算具有明显的优劣互补特征,在多种应用场合下可以将两者结合起来使用,通过发挥流式计算的实时性优势和批量计算的计算精度 优势,满足多种应用场景在不同阶段的数据计算要求。
通常情况下,大数据流式计算场景具有以下鲜明特征:
在流式计算环境中,数据是以元组为单位,以连续数据流的形态,持续地到达大数据流式计算平台。数据并不是一次全部可用,不能够一次得到全量数据,只能在不同的时间点,以增量的方式,逐步得到相应数据。
数据源往往是多个,在进行数据流重放的过程中,数据流中各个元组间的相对顺序是不能控制的。也就是说,在数据流重放过程中,得到完全相同的数据流(相同的数据元组和相同的元组顺序)是很困难的,甚至是不可能的。
数据流的流速是高速的,且随着时间在不断动态变化。这种变化主要体现在两个方面,一个方面是数据流流速大小在不同时间点的变化,这就需要系统可以弹性、动 态地适应数据流的变化,实现系统中资源、能耗的高效利用;另一方面是数据流中各个元组内容(语义)在不同时间点的变化,即概念漂移,这就需要处理数据流的 有向任务图可以及时识别、动态更新和有效适应这种语义层面上的变化。
实时分析和处理数据流是至关重要的,在数据流中,其生命周期的时效性往往很短,数据的时间价值也更加重要。所有数据流到来后,均需要实时处理,并实时产生 相应结果,进行反馈,所有的数据元组也仅会被处理一次。虽然部分数据可能以批量的形式被存储下来,但也只是为了满足后续其他场景下的应用需求。
数据流是无穷无尽的,只要有数据源在不断产生数据,数据流就会持续不断地到来。这也就需要流式计算系统永远在线运行,时刻准备接收和处理到来的数据流。在线运行是流式计算系统的一个常态,一旦系统上线后,所有对该系统的调整和优化也将在在线环境中开展和完成。
多个不同应用会通过各自的有向任务图进行表示,并将被部署在一个大数据计算平台中,如图1所示,这就需要整个计算平台可以有效地为各个有向任务图分配合理 资源,并保证满足用户服务级目标。同时各个资源间需要公平地竞争资源、合理地共享资源,特别是要满足不同时间点各应用间系统资源的公平使用。
在大数据时代,数据的时效性日益突出,数据的流式特征更加明显,越来越多的应用场景需要部署在流式计算平台中。大数据流式计算作为大数据计算的一种形态,其重要性也在不断提升。
以上是关于剖析 大数据流式计算场景特征的主要内容,如果未能解决你的问题,请参考以下文章