干货|Pytorch还是Tensorflow?英伟达工程师帮你总结了
Posted CUDATEK酷达智能
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了干货|Pytorch还是Tensorflow?英伟达工程师帮你总结了相关的知识,希望对你有一定的参考价值。
CUDATEK是深度学习软硬件解决方案专家,提供GPU硬件解决方案;CUDA解决方案专家; 面向制造业,影视动漫娱乐硬件解决方案;专业计算金融GPU解决方案;IVA GPU软硬件解决方案。
本文作者Dominic Monn,是NVIDIA机器学习工程师。在本文中,作者讲述了自己在深度学习过程中使用PyTorch和TensorFlow的一些实际体会,他从安装、使用、文档、社区和工具五个角度,比较了PyTorch和TensorFlow的优点和不足。
作者此前一直是TensorFlow用户,不过出于工作考虑,加入NVIDIA时,决定改用PyTorch,也就有了对比PyTorch和TensorFlow这篇文章。
PyTorch简单的安装方式、Python化的使用风格,以及比TensorFlow稍快一些的运算速度非常适合工作之外的空闲时间使用。对于想入坑的童鞋来说,这篇文章具有很好的借鉴意义。
安装
PyTorch的安装非常简单。用户可以通过PIP进行安装,也可以从源代码构建。PyTorch还提供了Docker镜像,可以作为您自己的项目的基础镜像。
但是PyTorch没有像TensorFlow那样有专门的CPU和GPU的版本。虽然这样会让安装更容易,但是如果想要同时支持CPU和GPU使用的话,就会需要生成更多代码。
还有一点需要注意的是,PyTorch还没有提供官方的分发渠道。虽然有Windows的非官方端口,但是没有来自PyTorch的支持。
用法
PyTorch提供了一个非常Python化的 API。TensorFlow则需要用户定义所有的Tensors和Graph,然后在会话中运行它。
在我看来,这会带来更多,但也更清洁的代码。 PyTorch图必须在继承自PyTorch nn.Module的类中定义。当运行Graph时,将调用forward() 函数。通过这种“约定配置”的方法,将保证graph的位置总是已知,而不用定义其余代码中的变量。
这种“新”方法需要一些时间才能习惯,但我认为,如果您之前在深度学习之外使用过Python,这会非常简单的。
从一些评论来看,PyTorch与TensorFlow相比,在许多模型上也表现出了更好的性能。
文档
PyTorch文档的大部分已经完成。我在使用过程中,还没有碰到过找不到函数定义或模块的情况。与TensorFlow的所有函数都有一个独立页面不同,PyTorch每个模块仅仅有一页文档。如果你之前一直使用Google风格的编程工具,那么在PyTorch中寻找函数的话,会有点儿困难。
社区
显然,PyTorch的社区并不像TensorFlow那么大。然而,在空闲时间许多人还是喜欢PyTorch,即使在上班时间他们要使用TensorFlow。一旦PyTorch开始完成公测,推出正式版本,我相信Pytorch的社区现状就会改变。而且目前,在PyTorch社区里想发现老司机还有一点难度。
只有社区足够大,官方论坛中的问题才会比较快速的得到一个答案,并且完善很多神经网络示例的PyTorch版本。
工具和助手
尽管PyTorch提供了相当数量的工具,但一些非常有用的工具却十分缺少。尤其是缺少一个像TensorFlow里的TensorBoard那样强有力的工具。这就使得可视化比较困难。
还有一些非常常见的辅助工具也比较缺乏。这需要比TensorFlow更多的自写代码。
结论
如果你想换掉TensorFlow,那么PyTorch绝对是最佳选择。由于PyTorch还处于测试阶段,我希望它可以在可用性,文档和性能等方面有更多的改变和提升。
PyTorch是非常python化的工具,用起来感觉也很舒服。它有一个很好的社区和文档,而且运行起来也被认为比TensorFlow快。
当然,与TensorFlow相比,PyTorch的社区仍然相对较小,并且缺少一些有用的工具,例如像TensorBoard这样的可视化工具。
业务咨询与购买:karena@cudatek.com
上海酷达计算机科技有限公司
TEL 021-54181199
以上是关于干货|Pytorch还是Tensorflow?英伟达工程师帮你总结了的主要内容,如果未能解决你的问题,请参考以下文章
经验 | Pytorch还是Tensorflow?英伟达工程师帮你总结了
PyTorch vs. TensorFlow月度使用体验总结
开发 | PyTorch vs. TensorFlow月度使用体验总结