实时流计算Spark StreamingKafkaRedisExactly-once实时去重
Posted 西安大数据
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了实时流计算Spark StreamingKafkaRedisExactly-once实时去重相关的知识,希望对你有一定的参考价值。
本文想记录和表达的东西挺多的,一时想不到什么好的标题,所以就用上面的关键字作为标题了。
在实时流式计算中,最重要的是在任何情况下,消息不重复、不丢失,即Exactly-once。本文以Kafka–>Spark Streaming–>Redis为例,一方面说明一下如何做到Exactly-once,另一方面说明一下我是如何计算实时去重指标的。
1. 关于数据源
数据源是文本格式的日志,由nginx产生,存放于日志服务器上。在日志服务器上部署Flume Agent,使用TAILDIR Source和Kafka Sink,将日志采集到Kafka进行临时存储。日志格式如下:
2018-02-22T00:00:00+08:00|~|200|~|/test?pcid=DEIBAH&siteid=3
2018-02-22T00:00:00+08:00|~|200|~|/test?pcid=GLLIEG&siteid=3
2018-02-22T00:00:00+08:00|~|200|~|/test?pcid=HIJMEC&siteid=8
2018-02-22T00:00:00+08:00|~|200|~|/test?pcid=HMGBDE&siteid=3
2018-02-22T00:00:00+08:00|~|200|~|/test?pcid=HIJFLA&siteid=4
2018-02-22T00:00:01+08:00|~|200|~|/test?pcid=JCEBBC&siteid=9
2018-02-22T00:00:01+08:00|~|200|~|/test?pcid=KJLAKG&siteid=8
2018-02-22T00:00:01+08:00|~|200|~|/test?pcid=FHEIKI&siteid=3
2018-02-22T00:00:01+08:00|~|200|~|/test?pcid=IGIDLB&siteid=3
2018-02-22T00:00:01+08:00|~|200|~|/test?pcid=IIIJCD&siteid=5
日志是由测试程序模拟产生的,字段之间由|~|分隔。
2. 实时计算需求
分天、分小时PV;
分天、分小时、分网站(siteid)PV;
分天 UV;
3. Spark Streaming消费Kafka数据
http://spark.apache.org/docs/latest/streaming-kafka-0-10-integration.html
在Spark Streaming中消费Kafka数据,保证Exactly-once的核心有三点:
使用Direct方式连接Kafka;自己保存和维护Offset;更新Offset和计算在同一事务中完成;
后面的Spark Streaming程序(文章结尾),主要有以下步骤:
启动后,先从Redis中获取上次保存的Offset,Redis中的key为”topic_partition”,即每个分区维护一个Offset;
使用获取到的Offset,创建DirectStream;
在处理每批次的消息时,利用Redis的事务机制,确保在Redis中指标的计算和Offset的更新维护,在同一事务中完成。只有这两者同步,才能真正保证消息的Exactly-once。
./spark-submit \
--class com.lxw1234.spark.TestSparkStreaming \
--master local[2] \
--conf spark.streaming.kafka.maxRatePerPartition=20000 \
--jars /data1/home/dmp/lxw/realtime/commons-pool2-2.3.jar,\
/data1/home/dmp/lxw/realtime/jedis-2.9.0.jar,\
/data1/home/dmp/lxw/realtime/kafka-clients-0.11.0.1.jar,\
/data1/home/dmp/lxw/realtime/spark-streaming-kafka-0-10_2.11-2.2.1.jar \
/data1/home/dmp/lxw/realtime/testsparkstreaming.jar \
--executor-memory 4G \
--num-executors 1
在启动Spark Streaming程序时候,有个参数最好指定:
spark.streaming.kafka.maxRatePerPartition=20000(每秒钟从topic的每个partition最多消费的消息条数)
如果程序第一次运行,或者因为某种原因暂停了很久重新启动时候,会积累很多消息,如果这些消息同时被消费,很有可能会因为内存不够而挂掉,因此,需要根据实际的数据量大小,以及批次的间隔时间来设置该参数,以限定批次的消息量。
如果该参数设置20000,而批次间隔时间未10秒,那么每个批次最多从Kafka中消费20万消息。
4. Redis中的数据模型
分小时、分网站PV
普通K-V结构,计算时候使用incr命令递增,
Key为 “site_pv_网站ID_小时”,
如:site_pv_9_2018-02-21-00、site_pv_10_2018-02-21-01
该数据模型用于计算分网站的按小时及按天PV。
分小时PV
普通K-V结构,计算时候使用incr命令递增,
Key为“pv_小时”,如:pv_2018-02-21-14、pv_2018-02-22-03
该数据模型用于计算按小时及按天总PV。
分天UV
Set结构,计算时候使用sadd命令添加,
Key为”uv_天”,如:uv_2018-02-21、uv_2018-02-20
该数据模型用户计算按天UV(获取时候使用SCARD命令获取Set元素个数)
注:这些Key对应的时间,均由实际消息中的第一个字段(时间)而定。
5. 故障恢复
如果Spark Streaming程序因为停电、网络等意外情况终止而需要恢复,则直接重启即可;
如果因为其他原因需要重新计算某一时间段的消息,可以先删除Redis中对应时间段内的Key,然后从原始日志中截取该时间段内的消息,当做新消息添加至Kafka,由Spark Streaming程序重新消费并进行计算;
6. 附程序
依赖jar包:
commons-pool2-2.3.jar
jedis-2.9.0.jar
kafka-clients-0.11.0.1.jar
spark-streaming-kafka-0-10_2.11-2.2.1.jar
InternalRedisClient (Redis链接池)
TestSparkStreaming
鉴于篇幅原因,代码请点击原文链接,到原文中查看。
以上是关于实时流计算Spark StreamingKafkaRedisExactly-once实时去重的主要内容,如果未能解决你的问题,请参考以下文章
聊聊批计算、流计算、Hadoop、Spark、Storm、Flink等等
实时流计算Spark StreamingKafkaRedisExactly-once实时去重