Kafka日志设置和清除策略
Posted 加米谷学院
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Kafka日志设置和清除策略相关的知识,希望对你有一定的参考价值。
1修改日志级别
config/log4j.properties中日志的级别设置的是TRACE,在长时间运行过程中产生的日志大小吓人,所以如果没有特殊需求,强烈建议将其更改成INFO级别。具体修改方法如下所示,将config/log4j.properties文件中最后的几行中的TRACE改成INFO,修改前如下所示:
log4j.logger.kafka.network.RequestChannel$=TRACE, requestAppender
log4j.additivity.kafka.network.RequestChannel$=false
#log4j.logger.kafka.network.Processor=TRACE, requestAppender
#log4j.logger.kafka.server.KafkaApis=TRACE, requestAppender
#log4j.additivity.kafka.server.KafkaApis=false
log4j.logger.kafka.request.logger=TRACE, requestAppender
log4j.additivity.kafka.request.logger=false
log4j.logger.kafka.controller=TRACE, controllerAppender
log4j.additivity.kafka.controller=false
log4j.logger.state.change.logger=TRACE, stateChangeAppender
log4j.additivity.state.change.logger=false
修改后如下所示:
log4j.logger.kafka.network.RequestChannel$=INFO, requestAppender
log4j.additivity.kafka.network.RequestChannel$=false
#log4j.logger.kafka.network.Processor=INFO, requestAppender
#log4j.logger.kafka.server.KafkaApis=INFO, requestAppender
#log4j.additivity.kafka.server.KafkaApis=false
log4j.logger.kafka.request.logger=INFO, requestAppender
log4j.additivity.kafka.request.logger=false
log4j.logger.kafka.controller=INFO, controllerAppender
log4j.additivity.kafka.controller=false
log4j.logger.state.change.logger=INFO, stateChangeAppender
log4j.additivity.state.change.logger=false
2修改日志存放位置
还有就是默认Kafka运行的时候都会通过log4j打印很多日志文件,比如server.log, controller.log, state-change.log等,而都会将其输出到$KAFKA_HOME/logs目录下,这样很不利于线上运维,因为经常容易出现打爆文件系统,一般安装的盘都比较小,而数据和日志会指定打到另一个或多个更大空间的分区盘
具体方法是,打开$KAFKA_HOME/bin/kafka-run-class.sh,找到下面标示的位置,并定义一个变量,指定的值为系统日志输出路径,重启broker即可生效。
日志清理和策略
1利用Kafka日志管理器
Kafka日志管理器允许定制删除策略。目前的策略是删除修改时间在N天之前的日志(按时间删除),也可以使用另外一个策略:保留最后的N GB数据的策略(按大小删除)。为了避免在删除时阻塞读操作,采用了copy-on-write形式的实现,删除操作进行时,读取操作的二分查找功能实际是在一个静态的快照副本上进行的,这类似于Java的CopyOnWriteArrayList。
Kafka消费日志删除思想:Kafka把topic中一个parition大文件分成多个小文件段,通过多个小文件段,就容易定期清除或删除已经消费完文件,减少磁盘占用
log.cleanup.policy=delete启用删除策略
直接删除,删除后的消息不可恢复。可配置以下两个策略:
清理超过指定时间清理:
log.retention.hours=16
超过指定大小后,删除旧的消息:
log.retention.bytes=1073741824
2压缩策略
将数据压缩,只保留每个key最后一个版本的数据。首先在broker的配置中设置log.cleaner.enable=true启用cleaner,这个默认是关闭的。在Topic的配置中设置log.cleanup.policy=compact启用压缩策略。
压缩策略的细节如下:
如上图,在整个数据流中,每个Key都有可能出现多次,压缩时将根据Key将消息聚合,只保留最后一次出现时的数据。这样,无论什么时候消费消息,都能拿到每个Key的最新版本的数据。
压缩后的offset可能是不连续的,比如上图中没有5和7,因为这些offset的消息被merge了,当从这些offset消费消息时,将会拿到比这个offset大的offset对应的消息,比如,当试图获取offset为5的消息时,实际上会拿到offset为6的消息,并从这个位置开始消费。
这种策略只适合特俗场景,比如消息的key是用户ID,消息体是用户的资料,通过这种压缩策略,整个消息集里就保存了所有用户最新的资料。
压缩策略支持删除,当某个Key的最新版本的消息没有内容时,这个Key将被删除,这也符合以上逻辑。
成都加米谷大数据科技有限公司是一家专注于大数据人才培养的机构。由来自阿里、华为、京东、星环等国内知名企业的多位技术大牛联合创办,技术底蕴丰厚,勤奋创新,精通主流前沿大数据及人工智能相关技术。
以国家规划大数据产业发展战略为指引,以全国大数据技术和大数据分析人才的培养为使命,以提升就业能力、强化职业技术为目标。面向社会提供大数据、人工智能等前沿技术的培训业务。
以上是关于Kafka日志设置和清除策略的主要内容,如果未能解决你的问题,请参考以下文章