大数据实时项目必备技能二:kafka有话说

Posted 大数据技术工程师

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据实时项目必备技能二:kafka有话说相关的知识,希望对你有一定的参考价值。

导读: Kafka是由LinkedIn开发并开源的分布式消息系统,因其分布式及高吞吐率而被广泛使用,现已与Cloudera Hadoop,Apache Storm,Apache Spark集成。

Kafka创建背景

Kafka是一个消息系统,原本开发自LinkedIn,用作LinkedIn的活动流(Activity Stream)和运营数据处理管道(Pipeline)的基础。现在它已被多家不同类型的公司 作为多种类型的数据管道和消息系统使用。

活动流数据是几乎所有站点在对其网站使用情况做报表时都要用到的数据中最常规的部分。活动数据包括页面访问量(Page View)、被查看内容方面的信息以及搜索情况等内容。这种数据通常的处理方式是先把各种活动以日志的形式写入某种文件,然后周期性地对这些文件进行统计分析。运营数据指的是服务器的性能数据(CPU、IO使用率、请求时间、服务日志等等数据)。运营数据的统计方法种类繁多。

近年来,活动和运营数据处理已经成为了网站软件产品特性中一个至关重要的组成部分,这就需要一套稍微更加复杂的基础设施对其提供支持。

Kafka简介

Kafka是一种分布式的,基于发布/订阅的消息系统。主要设计目标如下:

以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间复杂度的访问性能

高吞吐率。即使在非常廉价的商用机器上也能做到单机支持每秒100K条以上消息的传输

支持Kafka Server间的消息分区,及分布式消费,同时保证每个Partition内的消息顺序传输

同时支持离线数据处理和实时数据处理

Scale out:支持在线水平扩展

为何使用消息系统

解耦

在项目启动之初来预测将来项目会碰到什么需求,是极其困难的。消息系统在处理过程中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口。这允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。冗余

有些情况下,处理数据的过程会失败。除非数据被持久化,否则将造成丢失。消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的”插入-获取-删除”范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。扩展性

因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。不需要改变代码、不需要调节参数。扩展就像调大电力按钮一样简单。灵活性 & 峰值处理能力

在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见;如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。可恢复性

系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。顺序保证

在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。Kafka保证一个Partition内的消息的有序性。缓冲

在任何重要的系统中,都会有需要不同的处理时间的元素。例如,加载一张图片比应用过滤器花费更少的时间。消息队列通过一个缓冲层来帮助任务最高效率的执行———写入队列的处理会尽可能的快速。该缓冲有助于控制和优化数据流经过系统的速度。异步通信

很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

常用Message Queue对比

RabbitMQ

RabbitMQ是使用Erlang编写的一个开源的消息队列,本身支持很多的协议:AMQP,XMPP, SMTP, STOMP,也正因如此,它非常重量级,更适合于企业级的开发。同时实现了Broker构架,这意味着消息在发送给客户端时先在中心队列排队。对路由,负载均衡或者数据持久化都有很好的支持。Redis

Redis是一个基于Key-Value对的NoSQL数据库,开发维护很活跃。虽然它是一个Key-Value数据库存储系统,但它本身支持MQ功能,所以完全可以当做一个轻量级的队列服务来使用。对于RabbitMQ和Redis的入队和出队操作,各执行100万次,每10万次记录一次执行时间。测试数据分为128Bytes、512Bytes、1K和10K四个不同大小的数据。实验表明:入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受;出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能则远低于Redis。ZeroMQ

ZeroMQ号称最快的消息队列系统,尤其针对大吞吐量的需求场景。ZMQ能够实现RabbitMQ不擅长的高级/复杂的队列,但是开发人员需要自己组合多种技术框架,技术上的复杂度是对这MQ能够应用成功的挑战。ZeroMQ具有一个独特的非中间件的模式,你不需要安装和运行一个消息服务器或中间件,因为你的应用程序将扮演这个服务器角色。你只需要简单的引用ZeroMQ程序库,可以使用NuGet安装,然后你就可以愉快的在应用程序之间发送消息了。

但是ZeroMQ仅提供非持久性的队列,也就是说如果宕机,数据将会丢失。其中,Twitter的Storm 0.9.0以前的版本中默认使用ZeroMQ作为数据流的传输(Storm从0.9版本开始同时支持ZeroMQ和Netty作为传输模块)。ActiveMQ

ActiveMQ是Apache下的一个子项目。 类似于ZeroMQ,它能够以代理人和点对点的技术实现队列。同时类似于RabbitMQ,它少量代码就可以高效地实现高级应用场景。Kafka/Jafka

Kafka是Apache下的一个子项目,是一个高性能跨语言分布式发布/订阅消息队列系统,而Jafka是在Kafka之上孵化而来的,即Kafka的一个升级版。具有以下特性:

快速持久化,可以在O(1)的系统开销下进行消息持久化;

高吞吐,在一台普通的服务器上既可以达到10W/s的吞吐速率;

完全的分布式系统,Broker、Producer、Consumer都原生自动支持分布式,

自动实现负载均衡;支持Hadoop数据并行加载,对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。Kafka通过Hadoop的并行加载机制统一了在线和离线

的消息处理。Apache Kafka相对于ActiveMQ是一个非常轻量级的消息系统,除了性能非常好之外,还是一个工作良好的分布式系统。

了解了kafka的基本情况,那么kafka能解决什么呢?

假设你意气风发,要开发新一代的互联网应用,以期在互联网事业中一展宏图。借助云计算,很容易开发出如下原型系统:

Web应用:部署在云服务器上,为个人电脑或者移动用户提供的访问体验。

SQL数据库:为Web应用提供数据持久化以及数据查询。

这套架构简洁而高效,很快便能够部署到百度云等云计算平台,以便快速推向市场。互联网不就是讲究小步快跑嘛!

好景不长。随着用户的迅速增长,所有的访问都直接通过SQL数据库使得它不堪重负,不得不加上缓存服务以降低SQL数据库的荷载;为了理解用户行为,开始收集日志并保存到Hadoop上离线处理,同时把日志放在全文检索系统中以便快速定位问题;由于需要给投资方看业务状况,也需要把数据汇总到数据仓库中以便提供交互式报表。此时的系统的架构已经盘根错节了,考虑将来还会加入实时模块以及外部数据交互,真是痛并快乐着……

大数据实时项目必备技能二:kafka有话说

这时候,应该跑慢一些,让灵魂跟上来。

本质上,这是一个数据集成问题。没有任何一个系统能够解决所有的事情,所以业务数据根据不同用途存而放在不同的系统,比如归档、分析、搜索、缓存等。数据冗余本身没有任何问题,但是不同系统之间像意大利面条一样复杂的数据同步却是挑战。

这时候就轮到Kafka出场了。

Kafka可以让合适的数据以合适的形式出现在合适的地方。Kafka的做法是提供消息队列,让生产者单往队列的末尾添加数据,让多个消费者从队列里面依次读取数据然后自行处理。之前连接的复杂度是O(N^2),而现在降低到O(N),扩展起来方便多了:

大数据实时项目必备技能二:kafka有话说

在Kafka的帮助下,你的互联网应用终于能够支撑飞速增长的业务,成为下一个BAT指日可待。

以上故事说明了Kafka主要用途是数据集成,或者说是流数据集成,以Pub/Sub形式的消息总线形式提供。但是,Kafka不仅仅是一套传统的消息总线,本质上Kafka是分布式的流数据平台,因为以下特性而著名:

提供Pub/Sub方式的海量消息处理。

以高容错的方式存储海量数据流。

保证数据流的顺序。

Kafka核心作者和业界一流一线人员共同执笔

全面介绍Kafka设计原理和架构细节

本书是关于Kafka的全面教程,主要内容包括:Kafka相对于其他消息队列系统的优点,主要是它如何完美匹配大数据平台开发;详解Kafka内部设计;用Kafka构建应用的最佳实践;理解在生产中部署Kafka的最佳方式;如何确保Kafka集群的安全

Kafka自LinkedIn开源以来就以高性能、高吞吐量、分布式的特性著称,本书以0.10版本的源码为基础,深入分析了Kafka的设计与实现,包括生产者和消费者的消息处理流程,新旧消费者不同的设计方式,存储层的实现,协调者和控制器如何确保Kafka集群的分布式和容错特性,两种同步集群工具MirrorMaker和uReplicator,流处理的两种API以及Kafka的一些高级特性等。

好啦,今天就分享这些,有不好的地方希望大家多多指教哦,还是老规矩,希望大家多多关注,你的一份关注就是我不断努力的动力,也希望大家在忙碌的同时也要按时吃饭,照顾好自己。加群大家一起交流讨论,725197860


以上是关于大数据实时项目必备技能二:kafka有话说的主要内容,如果未能解决你的问题,请参考以下文章

大数据实战项目必备技术技能:分布式文件系统HDFS

(项目架构的过去与现在)亿级用户行为之大数据实时分析

合格大数据分析师应该具备的技能

kafka应用场景,大厂面试必备技能

新闻网大数据实时分析可视化系统项目——9Flume+HBase+Kafka集成与开发

大数据实时+离线项目架构----智慧物流大数据平台(超流行框架!)