kafka——一种特殊的分布式文件系统
Posted RonnieYang的大数据私房菜
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了kafka——一种特殊的分布式文件系统相关的知识,希望对你有一定的参考价值。
按照一般的观点,Kafka它本质上是一个消息系统。其实从另一个角度来看,kafka也是一种分布式文件系统。
一、kafka的背景
Kafka由当时从LinkedIn出来创业的三人小组开发,他们开发出了Apache Kafka实时信息队列技术,该技术致力于为各行各业的公司提供实时数据处理服务解决方案。Kafka为LinkedIn的中枢神经系统,管理从各个应用程序的汇聚,这些数据经过处理后再被分发到其他地方。Kafka不同于传统的企业信息队列系统,它是以近乎实时的方式处理流经一个公司的所有数据,目前已经服务于LinkedIn、Netflix、Uber以及Verizon,并为此建立了实时信息处理平台。
流水数据是所有站点对其网站使用情况做报表时都要用到的数据中最常用的一部分,流水数据包括PV,浏览内容信息以及搜索记录等。这些数据通常是先以日志文件的形式存在,然后有周期的去对这些日志文件进行统计分析处理,然后获得需要的KPI指标结果。
一个流处理平台具有三个关键能力:
发布和订阅消息(流),在这方面,它类似于一个消息队列或企业消息系统。
以容错的方式存储消息(流)。
在消息流发生时处理它们。
二、kafka的应用场景
首先,Kafka可以应用于消息系。比如,当下较为热门的消息推送,这些消息推送系统的消息源,可以使用Kafka作为系统的核心组建来完成消息的生产和消息的消费。
其次,kafka可以用于网站的行迹。我们可以将企业的Portal,用户的操作记录等信息发送到Kafka中,按照实际业务需求,可以进行实时监控,或者做离线处理等。
另外,kafka是一个是日志收集工具,类似于Flume套件这样的日志收集系统。但Kafka的设计架构采用push/pull,适合异构集群,Kafka可以批量提交消息,对Producer来说,在性能方面基本上是无消耗的,而在Consumer端中,我们可以使用HDFS这类的分布式文件存储系统进行存储。
三、Kafka架构原理
1、Producer And Consumer
这里Kafka对消息的保存是根据Topic进行归类的,由消息生产者(Producer)和消息消费者(Consumer)组成,另外,每一个Server称为一个Broker。对于Kafka集群而言,Producer和Consumer都依赖于ZooKeeper来保证数据的一致性。
2、Topic
在每条消息输送到Kafka集群后,消息都会由一个Type,这个Type被称为一个Topic,不同的Topic的消息是分开存储的。如下图所示:
一个Topic会被归类为一则消息,每个Topic可以被分割为多个Partition,在每条消息中,它在文件中的位置称为Offset,用于标记唯一一条消息。在Kafka中,消息被消费后,消息仍然会被保留一定时间后在删除,比如在配置信息中,文件信息保留7天,那么7天后,不管Kafka中的消息是否被消费,都会被删除;以此来释放磁盘空间,减少磁盘的IO消耗。
在Kafka中,一个Topic的多个分区,被分布在Kafka集群的多个Server上,每个Server负责分区中消息的读写操作。另外,Kafka还可以配置分区需要备份的个数,以便提高可用行。由于用到来ZK来协调,每个分区都有一个Server为Leader状态,服务对外响应(如读写操作),若该Leader宕机,会由其他的Follower来选举出新的Leader来保证集群的高可用性。
四、作为一个消息系统
传统的消息有两种模式:队列和发布订阅。
在队列模式中,消费者池从服务器读取消息(每个消息只被其中一个读取); 发布订阅模式:消息广播给所有的消费者。这两种模式都有优缺点,队列的优点是允许多个消费者瓜分处理数据,这样可以扩展处理。但是,队列不像多个订阅者,一旦消息者进程读取后故障了,那么消息就丢了。而发布和订阅允许你广播数据到多个消费者,由于每个订阅者都订阅了消息,所以没办法缩放处理。
kafka中消费者组有两个概念:队列:消费者组(consumer group)允许同名的消费者组成员瓜分处理。发布订阅:允许你广播消息给多个消费者组(不同名)。
kafka的每个topic都具有这两种模式。
kafka有比传统的消息系统更强的顺序保证。
传统的消息系统按顺序保存数据,如果多个消费者从队列消费,则服务器按存储的顺序发送消息,但是,尽管服务器按顺序发送,消息异步传递到消费者,因此消息可能乱序到达消费者。这意味着消息存在并行消费的情况,顺序就无法保证。消息系统常常通过仅设1个消费者来解决这个问题,但是这意味着没用到并行处理。
kafka做的更好。通过并行topic的parition —— kafka提供了顺序保证和负载均衡。每个partition仅由同一个消费者组中的一个消费者消费到。并确保消费者是该partition的唯一消费者,并按顺序消费数据。每个topic有多个分区,则需要对多个消费者做负载均衡,但请注意,相同的消费者组中不能有比分区更多的消费者,否则多出的消费者一直处于空等待,不会收到消息。
五、作为一个分布式存储系统
所有发布消息到消息队列和消费分离的系统,实际上都充当了一个存储系统(发布的消息先存储起来)。Kafka比别的系统的优势是它是一个非常高性能的存储系统。
写入到kafka的数据将写到磁盘并复制到集群中保证容错性。并允许生产者等待消息应答,直到消息完全写入。
kafka的磁盘结构 - 无论你服务器上有50KB或50TB,执行是相同的。
client来控制读取数据的位置。你还可以认为kafka是一种专用于高性能,低延迟,提交日志存储,复制,和传播特殊用途的分布式文件系统。
六、总结
不管是一个消息系统还是一个分布式的文件存储系统,kafka在大数据领域所起到的作用时不容小视的。特别是在实时流处理日益重要的今天,kafka任重而道远,我们作为大数据开发者和kafka的使用者,理当对kafka用比较深入的了解。在今后的一段时间里,Ronnie将为大家整理出kafka的一系列文章,供大家一起学习kafka。
以上是关于kafka——一种特殊的分布式文件系统的主要内容,如果未能解决你的问题,请参考以下文章
分布式文件系统和企业级应用——zookeeper集群和kafka的相关概念就部署