本文基于ECML-PKDD-2020论文《Social Influence Attentive Neural Network for Friend-Enhanced Recommendation》,论文作者是北京邮电大学、腾讯微信、新加坡管理大学的陆元福、谢若冰、石川、方元、王伟、张旭和林乐宇。
导读
随着在线社交网络的兴起,许多社交应用程序中出现了一种新的基于社交的推荐方式,微信看一看推荐系统中的朋友在看就是其代表应用之一。在本文中,我们将微信看一看的朋友在看推荐称为“好友增强型推荐(Friend-Enhanced Recommendation,FER)”。在 FER 中,对于某一从未交互过的商品,用户显式可见其好友对该商品的交互行为(这些好友被称作好友推荐圈),例如微信“看一看”场景下的文章推荐场景。与传统社交推荐不同, FER 中特有的好友推荐圈可能会因为其重要性和可解释性而显着改变推荐结果。
针对这一好友增强型推荐场景,作者提出了一种新颖的社交影响力专注的神经网络(SIAN)。SIAN 从异质信息网络的角度建模推荐场景,构建了注意力特征聚合器,其对多类型的异质信息进行节点级和类型级的特征聚合,并学习得到用户和商品的向量表示。更重要的是, SIAN 模型设计了一个社交影响力耦合器,以专心地捕捉好友推荐圈的影响力。基于两个公开数据集和一个微信看一看的数据,作者进行了丰富的实验分析,模型与对比方法相比,均有显著提升。尤其是,在看一看数据集上,作者进行了一些定量分析讨论,并得到了一些有趣的发现以及有价值的社会学模式。
图1. 好友增强性型推荐场景 上图左侧显示了推荐给 Jerry 的两篇文章的场景,下面是与两篇文章互动(共享,喜欢等)的朋友(如 Tom)。右侧显示了好友增强推荐问题的形式化,其中仅推荐朋友交互过的文章,并且与该项目进行交互的朋友被明确暴露给用户 Jerry。图 1 展示了微信“看一看”场景下的一个形式化示例。对于每一个用户-物品对,好友增强型推荐显式地展示已经和当前物品交互过的好友集合,这个集合被定义为:针对当前商品,当前用户的好友推荐圈(Friend Referral Circle, FRC)。举例来说,对于关于 AirPods 的文章, Jerry 的好友推荐圈是{Tom, Lily, Jack}。在传统社交推荐中,好友推荐圈对于 Jerry 是不可见的(不会展示给 Jerry),因此 Jerry 可能会基于自身的兴趣阅读某一篇文章。然而,在好友增强型推荐场景中,好友推荐圈对用户 Jerry 是显式可见的,因此他阅读这篇关于 AirPods 的文章,更可能是因为科技专家 Tom 读过这篇文章。而 Jerry 阅读一篇关于 Disneyland 的文章,完全有可能是因为他的妻子 Lily 读过这篇文章。更进一步地,当文章与科技相关时,相较于妻子和科技文章,专家和文章的同时出现对 Jerry 的耦合影响力更大,而在娱乐方面,可能是完全相反的情况。因此,在好友增强型推荐场景中,多个因素导致了用户的行为。用户阅读/点击一篇文章的原因可能来自:(1)其自身对文章的兴趣(文章本身)(2)专家的推荐(文章-好友的组合)(3)对某一好友的关注(好友)。可以看到,在好友增强型推荐场景中,用户有关注好友在看的内容的倾向,而非仅仅看自己本身感兴趣的内容。甚至可以说,传统社交推荐关注于结合社交信息去推荐物品,而好友增强的推荐旨在推荐物品和好友的组合。作为好友增强型推荐的关键特性,显式的好友推荐圈为该推荐场景带来两个挑战:(1)如何从多方面的异质因素中提取关键信息?好友增强的推荐场景涉及多个异质目标,例如物品内容,好友推荐圈及用户-物品交互行为等。在用户,物品和朋友推荐圈的不同组合下,这些因素的影响甚至也有所不同。因此好友增强的推荐场景更具挑战性,因为它不仅需要学习用户对商品的偏好,还需要预测不同因素对好友的影响。(2)如何利用显式的好友推荐圈信息?显式的好友推荐圈推荐极大地强调了推荐中社交信息的重要性,这在好友增强的推荐场景中是至关重要。但是,很少有工作在实际推荐中探索好友推荐圈的影响和特性。因此需要一种精心设计的策略,以充分利用好友增强的推荐场景中的显式的好友推荐圈信息。为了解决这些问题,作者提出了一种新颖的社交影响力专注的神经网络(SIAN)。具体来说, SIAN 将好友增强推荐定义为异质社交图上的用户-物品交互预测任务,该任务将丰富的异质信息灵活地集成到异质对象及其交互连接中。首先,作者设计了一个注意力特征聚合器,它同时考虑节点级和类型级的特征聚合,以学习用户和物品的表示向量。接下来,作者实现了一个社交影响力耦合器,以建模通过显式好友推荐圈传播的耦合影响力,该耦合器利用注意力机制将多种因素(例如,朋友和物品)的影响力耦合在一起。总体而言,SIAN 模型捕获了好友增强的推荐场景中有价值的多方面因素,从而成功地从异质信息网络和显式好友推荐圈中提取了用户的最基本偏好。
模型结构
如图 2 所示, SIAN 利用异质社交网络建模好友增强型推荐场景。除了用户和物品的向量表示,SIAN 还通过耦合有影响力的好友与物品来学习社交影响力的低维向量表示。通过学习用户、物品和耦合的社交影响力的向量表示,最终 SIAN 预测用户