NoSQL or SQL?

Posted 73号弓箭手

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了NoSQL or SQL?相关的知识,希望对你有一定的参考价值。

NoSQL的诞生原因

随着互联网的不断发展,各种类型的应用层出不穷,所以导致在这个云计算的时代,对技术提出了更多的需求,主要体现在下面这四个方面: 

1. 低延迟的读写速度:应用快速地反应能极大地提升用户的满意度; 

2. 支撑海量的数据和流量:对于搜索这样大型应用而言,需要利用PB级别的数据和能应对百万级的流量; 

3. 大规模集群的管理:系统管理员希望分布式应用能更简单的部署和管理; 

4. 庞大运营成本的考量:IT经理们希望在硬件成本、软件成本和人力成本能够有大幅度地降低; 

目前世界上主流的存储系统大部分还是采用了关系型数据库,其主要有一下优点:

1.事务处理---保持数据的一致性;

2.由于以标准化为前提,数据更新的开销很小(相同的字段基本上只有一处);

3.可以进行Join等复杂查询。

虽然关系型数据库已经在业界的数据存储方面占据不可动摇的地位,但是由于其天生的几个限制,使其很难满足上面这几个需求: 

1. 扩展困难:由于存在类似Join这样多表查询机制,使得数据库在扩展方面很艰难; 

2. 读写慢:这种情况主要发生在数据量达到一定规模时由于关系型数据库的系统逻辑非常复杂,使得其非常容易发生死锁等的并发问题,所以导致其读写速度下滑非常严重; 

3. 成本高:企业级数据库的License价格很惊人,并且随着系统的规模,而不断上升; 

4. 有限的支撑容量:现有关系型解决方案还无法支撑Google这样海量的数据存储; 

业界为了解决上面提到的几个需求,推出了多款新类型的数据库,并且由于它们在设计上和传统的NoSQL数据库相比有很大的不同,所以被统称为“NoSQL”系列数据库。总的来说,在设计上,它们非常关注对数据高并发地读写和对海量数据的存储等,与关系型数据库相比,它们在架构和数据模型方量面做了“减法”,而在扩展和并发等方面做了“加法”。现在主流的NoSQL数据库有BigTable、HBase、Cassandra、SimpleDB、CouchDB、MongoDB和Redis等。


为何要使用NoSQL数据库?

a、NoSQL具有灵活的数据模型,可处理非结构化/半结构化的大数据

现在我们可以通过Facebook、D&B等第三方轻松获得与访问数据,如个人用户信息、地理位置数据、社交图谱、用户产生的内容、机器日志数 据以及传感器生成的数据等。对这些数据的使用正在快速改变着通信、购物、广告、娱乐以及关系管理的特质。没有使用这些数据的应用很快就会被用户所遗忘。开 发者希望使用非常灵活的数据库,能够轻松容纳新的数据类型,并且不会被第三方数据提供商内容结构的变化所累。很多新数据都是非结构化或是半结构化的,因此开发者还需要能够高效存储这种数据的数据库。但遗憾的是,关系型数据库所使用的定义严格、基于模式的方式是无法快速容纳新的数据类型的,对于非结构化或是 半结构化的数据更是无能为力。NoSQL提供的数据模型则能很好地满足这种需求。很多应用都会从这种非结构化数据模型中获益,比如说CRM、ERP、BPM等等,他们可以通过这种灵活性存储数据而无需修改表或是创建更多的列。这些数据库也非常适合于创建原型或是快速应用,因为这种灵活性使得新特性的开 发变得非常容易。

b、NoSQL很容易实现可伸缩性(向上扩展与水平扩展)

如果有很多用户在频繁且并发地使用你的应用,那么你就需要考虑可伸缩的数据库技术而非传统的RDBMS了。对于关系型技术来说,很多应用开发者会发现动态 的可伸缩性是难以实现的,这时就应该考虑切换到NoSQL数据库上。对于云应用来说,关系型数据库一开始是普遍的选择。然而,在使用过程中却遇到了越来越 多的问题,原因就在于他们是中心化的,向上扩展而非水平扩展的。这使得他们不适合于那些需要简单且动态可伸缩性的应用。NoSQL数据库从一开始就是分布 式、水平扩展的,因此非常适合于互联网应用分布式的特性。

在三层互联网架构的Web/应用层上,多年来向上扩展已经成为默认的扩展方式了。随着应用使用人数的激增,我们需要添加更多的服务器,性能则是通过负载均 衡来实现的,这时的代价与用户数量成线性比例关系。在NoSQL数据库之前,数据库层的默认扩展方式就是向上扩展。为了支持更多的并发用户以及存储更多的 数据,你需要越来越好的服务器,更好的CPU、更多的内存、更大的磁盘来维护所有表。然而,好的服务器意味着更加复杂、私有、并且也更加昂贵。这与 Web/应用层所使用的便宜的硬件形成了鲜明的对比。

c、动态模式

d、自动分片

由于是结构化的,关系型数据库通常会垂直扩展,单台服务器要持有整个数据库来确保可靠性与数据的持续可用性。这样做的代价就是非常昂贵、扩展受到限制,并 且数据库基础设施会成为失败点。这个问题的解决方案就是水平扩展,添加服务器而不是为单台服务器增加更多的能力。NoSQL数据库通常都支持自动分片,这 意味着他们本质上就会自动在多台服务器上分发数据,应用甚至都不知道这些事情。数据与查询负载会自动在多台服务器上做到平衡,当某台服务器当机时,它能快 速且透明地被替换掉。

e、复制

大多数NoSQL数据库也支持自动复制,这意味着可以获得高可用性与灾备恢复功能。从开发者的角度来看存储环境本质上是虚拟化的。


NoSQL优缺点

接下来,将关注NoSQL数据库到底存在哪些优缺点。 

优缺点 

在优势方面,主要体现在下面这三点: 

1. 简单的扩展:典型例子是Cassandra,由于其架构是类似于经典的P2P,所以能通过轻松地添加新的节点来扩展这个集群; 

2. 快速的读写:主要例子有Redis,由于其逻辑简单,而且纯内存操作,使得其性能非常出色,单节点每秒可以处理超过10万次读写操作; 

3. 低廉的成本:这是大多数分布式数据库共有的特点,因为主要都是开源软件,没有昂贵的License成本; 

但瑕不掩瑜,NoSQL数据库还存在着很多的不足,常见主要有下面这几个: 

1. 不提供对SQL的支持:如果不支持SQL这样的工业标准,将会对用户产生一定的学习和应用迁移成本; 

2. 支持的特性不够丰富:现有产品所提供的功能都比较有限,大多数NoSQL数据库都不支持事务,也不像MS SQL Server和Oracle那样能提供各种附加功能,比如BI和报表等; 

3. 现有产品的不够成熟:大多数产品都还处于初创期,和关系型数据库几十年的完善不可同日而语; 

上面NoSQL产品的优缺点都是些比较共通的,在实际情况下,每个产品都会根据自己所遵从的数据模型和CAP理念而有所不同。


适合场景



NoSQL数据库正在成为数据库领域的重要力量。如果使用恰当,那么它会带来很多好处。然而,企业应该非常小心并注意到这些数据库的限制与问题。

NoSQL这两年越来越热,尤其是大型互联网公司非常热衷这门技术。根据笔者的经验,并不是任何场景,NoSQL都要优于关系型数据库。下面我们来具体聊聊,什么时候使用NoSQL比较给力:

1) 数据库表schema经常变化 
比如在线商城,维护产品的属性经常要增加字段,这就意味着ORMapping层的代码和配置要改,如果该表的数据量过百万,新增字段会带来额外开销(重建索引等)。NoSQL应用在这种场景,可以极大提升DB的可伸缩性,开发人员可以将更多的精力放在业务层。

2)数据库表字段是复杂数据类型

对于复杂数据类型,比如SQL Sever提供了可扩展性的支持,像xml类型的字段。很多用过的同学应该知道,该字段不管是查询还是更改,效率非常一般。主要原因是是DB层对xml字 段很难建高效索引,应用层又要做从字符流到dom的解析转换。NoSQL以json方式存储,提供了原生态的支持,在效率方便远远高于传统关系型数据库。

3)高并发数据库请求

此类应用常见于web2.0的网站,很多应用对于数据一致性要求很低,而关系型数据库的事务以及大表join反而成了”性能杀手”。在高并发情况 下,sql与no-sql的性能对比由于环境和角度不同一直是存在争议的,并不是说在任何场景,no-sql总是会比sql快。有篇article和大家 分享下,http://artur.ejsmont.org/blog/content/insert-performance-comparison-of-nosql-vs-sql-servers

4)海量数据的分布式存储

海量数据的存储如果选用大型商用数据,如Oracle,那么整个解决方案的成本是非常高的,要花很多钱在软硬件上。NoSQL分布式存储,可以部署在廉价的硬件上,是一个性价比非常高的解决方案。Mongo的auto-sharding已经运用到了生产环境。http://www.mongodb.org/display/DOCS/Sharding

并不是说NoSQL可以解决一切问题,像ERP系统、BI系统,在大部分情况还是推荐使用传统关系型数据库。主要的原因是此类系统的业务模型复杂,使用NoSQL将导致系统的维护成本增加。

选择SQL还是NoSQL

上面说明了为什么要使用NoSQL。接下来我们看下如何把NoSQL引入到我们的项目中,我们到底要不要把NoSQL引入到项目中。

在过去,我们只需要学习和使用一种数据库技术,就能做几乎所有的数据库应用开发。因为成熟稳定的关系数据库产品并不是很多,而供你选择的免费版本就 更加少了,所以互联网领域基本上都选择了免费的mysql数据库。在高速发展的WEB2.0时代,我们发现关系数据库在性能、扩展性、数据的快速备份和恢 复、满足需求的易用性上并不总是能很好的满足我们的需要,我们越来越趋向于根据业务场景选择合适的数据库,以及进行多种数据库的融合运用。几年前的一篇文 章《One Size Fits All - An Idea Whose Time Has Come and Gone》就已经阐述了这个观点。

当我们在讨论是否要使用NoSQL的时候,你还需要理解NoSQL也是分很多种类的,在NoSQL百花齐放的今天,NoSQL的正确选择比选择关系数据库还具有挑战性。虽然NoSQL的使用很简单,但是选择却是个麻烦事,这也正是很多人在观望的一个原因。

当我们在讨论是否要使用NoSQL的时候,你还需要理解NoSQL也是分很多种类的,在NoSQL百花齐放的今天,NoSQL的正确选择比选择关系数据库还具有挑战性。虽然NoSQL的使用很简单,但是选择却是个麻烦事,这也正是很多人在观望的一个原因。


SQL的分类

         NoSQL仅仅是一个概念,NoSQL数据库根据数据的存储模型和特点分为很多种类。

类型

部分代表

特点

列存储

Hbase

Cassandra

Hypertable

顾名思义,是按列存储数据的。最大的特点是方便存储结构化和半结构化数据,方便做数据压缩,对针对某一列或者某几列的查询有非常大的IO优势。

文档存储

MongoDB

CouchDB

文档存储一般用类似json的格式存储,存储的内容是文档型的。这样也就有有机会对某些字段建立索引,实现关系数据库的某些功能。

key-value存储

Tokyo Cabinet / Tyrant

Berkeley DB

MemcacheDB

Redis

可以通过key快速查询到其value。一般来说,存储不管value的格式,照单全收。(Redis包含了其他功能)

图存储

Neo4J

FlockDB

图形关系的最佳存储。使用传统关系数据库来解决的话性能低下,而且设计使用不方便。

对象存储

db4o

Versant

通过类似面向对象语言的语法操作数据库,通过对象的方式存取数据。

xml数据库

Berkeley DB XML

BaseX

高效的存储XML数据,并支持XML的内部查询语法,比如XQuery,Xpath。

        以上NoSQL数据库类型的划分并不是绝对,只是从存储模型上来进行的大体划分。它们之间没有绝对的分界,也有交差的情况,比如Tokyo Cabinet / Tyrant的Table类型存储,就可以理解为是文档型存储,Berkeley DB XML数据库是基于Berkeley DB之上开发的。

HOW TO CHOICE

NoSQL还是关系数据库

       虽然09年出现了比较激进的文章《关系数据库已死》,但是我们心里都清楚,关系数据库其实还活得好好的,你还不能不用关系数据库。但是也说明了一个事实,关系数据库在处理WEB2.0数据的时候,的确已经出现了瓶颈。

       那么我们到底是用NoSQL还是关系数据库呢?我想我们没有必要来进行一个绝对的回答。我们需要根据我们的应用场景来决定我们到底用什么。

如果关系数据库在你的应用场景中,完全能够很好的工作,而你又是非常善于使用和维护关系数据库的,那么我觉得你完全没有必要迁移到NoSQL上面,除非你是个喜欢折腾的人。如果你是在金融,电信等以数据为王的关键领域,目前使用的是Oracle数据库来提供高可靠性的,除非遇到特别大的瓶颈,不然也别贸然尝试NoSQL。

        然而,在WEB2.0的网站中,关系数据库大部分都出现了瓶颈。在磁盘IO、数据库可扩展上都花费了开发人员相当多的精力来优化,比如做分表分库(database sharding)、主从复制、异构复制等等,然而,这些工作需要的技术能力越来越高,也越来越具有挑战性。如果你正在经历这些场合,那么我觉得你应该尝试一下NoSQL了。

选择合适的NoSQL

       如此多类型的NoSQL,而每种类型的NoSQL又有很多,到底选择什么类型的NoSQL来作为我们的存储呢?这并不是一个很好回答的问题,影响我们选择的因素有很多,而选择也可能有多种,随着业务场景,需求的变更可能选择又会变化。我们常常需要根据如下情况考虑:

  1. 数据结构特点。包括结构化、半结构化、字段是否可能变更、是否有大文本字段、数据字段是否可能变化。

  2. 写入特点。包括insert比例、update比例、是否经常更新数据的某一个小字段、原子更新需求。

  3. 查询特点。包括查询的条件、查询热点的范围。比如用户信息的查询,可能就是随机的,而新闻的查询就是按照时间,越新的越频繁。

NoSQL和关系数据库结合

          其实NoSQL数据库仅仅是关系数据库在某些方面(性能,扩展)的一个弥补,单从功能上讲,NoSQL的几乎所有的功能,在关系数据库上都能够满足,所以选择NoSQL的原因并不在功能上。

所以,我们一般会把NoSQL和关系数据库进行结合使用,各取所长,需要使用关系特性的时候我们使用关系数据库,需要使用NoSQL特性的时候我们使用NoSQL数据库,各得其所。

举个简单的例子吧,比如用户评论的存储,评论大概有主键id、评论的对象aid、评论内容content、用户uid等字段。我们能确定的是评论内容content肯定不会在数据库中用where content=’’查询,评论内容也是一个大文本字段。那么我们可以把 主键id、评论对象aid、用户id存储在数据库,评论内容存储在NoSQL,这样数据库就节省了存储content占用的磁盘空间,从而节省大量IO,对content也更容易做Cache。

//从MySQL中查询出评论主键id列表 
commentIds=DB.query("SELECT id FROM comments where 
aid='评论对象id' LIMIT 0,20"); //根据主键id列表,从NoSQL取回评论实体数据 CommentsList=NoSQL.get(commentIds);

NoSQL代替MySQL

        在某些应用场合,比如一些配置的关系键值映射存储、用户名和密码的存储、Session会话存储等等,用NoSQL完全可以替代MySQL存储。不但具有更高的性能,而且开发也更加方便。


NoSQL作为缓存服务器 

由于NoSQL数据库天生具有高性能、易扩展的特点,所以我们常常结合关系数据库,存储一些高性能的、海量的数据。从另外一个角度看,根据NoSQL的高性能特点,它同样适合用于缓存数据。用NoSQL缓存数据可以分为内存模式和磁盘持久化模式。

内存模式

    说起内存模式缓存,我们自然就会想起大名鼎鼎的Memcached。在互联网发展过程中,Memcached曾经解救了数据库的大部分压力,做出了巨大的贡献,直到今天,它依然是缓存服务器的首选。Memcached的常见使用方式类似下面的代码:

     Memcached提供了相当高的读写性能,一般情况下,都足够应付应用的性能要求。但是基于内存的Memcached缓存的总数据大小受限于内存的大小。

     当前如日中天、讨论得异常火热的NoSQL数据库Redis又为我们提供了功能更加强大的内存存储功能。跟Memcached比,Redis的一个key的可以存储多种数据结构Strings、Hashes、Lists、Sets、Sorted sets。Redis不但功能强大,而且它的性能完全超越大名鼎鼎的Memcached。Redis支持List、hashes等多种数据结构的功能,提供了更加易于使用的api和操作性能,比如对缓存的list数据的修改。

      同样,其他一些NoSQL数据库也提供了内存存储的功能,所以也适合用来做内存缓存。比如Tokyo Tyrant就提供了内存hash数据库、内存tree数据库功能,内存tree数据可根据key的顺序进行遍历。你可以通过使用其提供的兼容Memcached协议或自定义的协议来使用。

持久化模式

     虽然基于内存的缓存服务器具有高性能,低延迟的特点,但是内存成本高、内存数据易失却不容忽视。几十GB内存的服务器,在很多公司看来,还比较奢侈。所以,我们应该根据应用的特点,尽量的提高内存的利用率,降低成本。

     大部分互联网应用的特点都是数据访问有热点,也就是说,只有一部分数据是被频繁访问的。如果全部都cache到内存中,无疑是对内存的浪费。

      这时,我们可以利用NoSQL来做数据的缓存。其实NoSQL数据库内部也是通过内存缓存来提高性能的,通过一些比较好的算法,把热点数据进行内存cache,非热点数据存储到磁盘以节省内存占用。由于其数据库结构的简单,从磁盘获取一次数 据也比从数据库一次耗时的查询划算很多。用NoSQL数据库做缓存服务器不但具有不错的性能。而且还能够Cache比内存大的数据。

     使用NoSQL来做缓存,由于其不受内存大小的限制,我们可以把一些不常访问、不怎么更新的数据也缓存起来。比如论坛、新闻的老数据、数据列表的靠后的页面,虽然用户访问不多,但是搜索引擎爬虫会访问,也可能导致系统负载上升。

     如果NoSQL持久化缓存也使用类似基于内存的memcached设置过期时间的方式,那么持久化缓存就失去了意义。所以用NoSQL做缓存的过期策略最好不使用时间过期,而是数据是否被更新过,如果数据没有更新,那么就永久不过期。下面我们用代码(php)演示一种实现这种策略的方法:

     场景:新闻站点的评论系统。用户对新闻页面的url进行评论,然后根据url进行查询展示。

   这种方式同样适用于基于内存的Memcached。它能实现缓存数据的实时性,让用户感觉不到延迟。只要用户一发表评论,该新闻的评论缓存就会失效。用户很少去评论一些过时的新闻,那么缓存就一直存在于NoSQL中,避免了爬虫访问过时新闻的评论数据而冲击数据库。



-End-





如果觉得不错,那就分享给更多的小伙伴吧!!

下方点赞留言▼▼▼

以上是关于NoSQL or SQL?的主要内容,如果未能解决你的问题,请参考以下文章