CAP理论,适合的才是最好的

Posted 胖牛势

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CAP理论,适合的才是最好的相关的知识,希望对你有一定的参考价值。

CAP理论,适合的才是最好的

CAP理论作为分布式系统的基础理论,它描述的是一个分布式系统在以下三个特性中:


一致性(Consistency)


可用性(Availability)


分区容错性(Partition tolerance)


最多满足其中的两个特性。也就是下图所描述的,分布式系统要么满足CA,要么CP,要么AP。无法同时满足CAP。



CAP理论,适合的才是最好的 



什么是一致性、可用性和分区容错性


分区容错性:指的分布式系统中的某个节点或者网络分区出现了故障的时候,整个系统仍然能对外提供满足一致性和可用性的服务。也就是说部分故障不影响整体使用。


事实上我们在设计分布式系统是都会考虑到bug硬件、网络等各种原因造成的故障,所以即使部分节点或者网络出现故障,我们要求整个系统还是要继续使用的。


(不继续使用,相当于只有一个分区,那么也就没有后续的一致性和可用性了。)


可用性:一直可以正常的做读写操作。简单而言就是客户端一直可以正常访问并得到系统的正常响应。用户角度来看就是不会出现系统操作失败或者访问超时等问题。


一致性:在分布式系统完成某写操作后任何读操作,都应该获取到该写操作写入的那个最新的值。相当于要求分布式系统中的各节点时时刻刻保持数据的一致性。


如何理解CAP理论


如果我们事先保证了分区容错性,也意味着若某个节点故障了,用户还是可以继续访问。这时用户在访问过程中就会出现一致性和可用性不能同时满足的情况,参考下图:


CAP理论,适合的才是最好的 

如图假设分布式系统有G1,G2两个节点,初始值都是v0。现在有一个client向系统写入了值v1,这里假设直接写的是节点G1。写完之后client再去读取这个值,这时读到了G2节点。


由于G2节点与G1节点失去连接,这时G1节点上的数据还未同步到G2节点,因此客户端读取到的是修改之前的值v0。这就出现了不满足一致性的情况了。相当于满足了可用性,失去了一致性。


类似的,如果系统保证了强的一致性,那么在client 写完G1节点后, 而G1向G2节点同步数据出现了问题,这时如果client再去读取G2节点的数据时,client就会一直处于等待状态,因为系统内各节点数据为同步上,需要等同步上才能使用。这就相当于满足了一致性,而失去了可用性。


CAP理论,适合的才是最好的 

CAP权衡


通过CAP理论及前面的证明,我们知道无法同时满足一致性、可用性和分区容错性这三个特性,那要舍弃哪个呢?我们分三种情况来阐述一下。


CA without P


这种情况在分布式系统中几乎是不存在的。首先在分布式环境下,网络分区是一个自然的事实。因为分区是必然的,所以如果舍弃P,意味着要舍弃分布式系统。那也就没有必要再讨论CAP理论了。这也是为什么在前面的CAP证明中,我们以系统满足P为前提论述了无法同时满足C和A。


比如我们熟知的关系型数据库,如My Sql和Oracle就是保证了可用性和数据一致性,但是他并不是个分布式系统。一旦关系型数据库要考虑主备同步、集群部署等就必须要把P也考虑进来。对于一个分布式系统来说。P是一个基本要求,CAP三者中,只能在CA两者之间做权衡,并且要想尽办法提升P。


CP without A


如果一个分布式系统不要求强的可用性,即容许系统停机或者长时间无响应的话,就可以在CAP三者中保障CP而舍弃A。一个保证了CP而一个舍弃了A的分布式系统,一旦发生网络故障或者消息丢失等情况,就要牺牲用户的体验,等待所有数据全部一致了之后再让用户访问系统。设计成CP的系统其实也不少,其中最典型的就是很多分布式数据库,他们都是设计成CP的。在发生极端情况时,优先保证数据的强一致性,代价就是舍弃系统的可用性。如Redis、HBase等,还有分布式系统中常用的Zookeeper也是在CAP三者之中选择优先保证CP的。


无论是像Redis、HBase这种分布式存储系统,还是像Zookeeper这种分布式协调组件。数据的一致性是他们最最基本的要求。一个连数据一致性都保证不了的分布式存储要他有何用?ZooKeeper是个CP(一致性+分区容错性)的,即任何时刻对ZooKeeper的访问请求能得到一致的数据结果,同时系统对网络分割具备容错性。


但是它不能保证每次服务请求的可用性,也就是在极端环境下,ZooKeeper可能会丢弃一些请求,消费者程序需要重新请求才能获得结果。ZooKeeper是分布式协调服务,它的职责是保证数据在其管辖下的所有服务之间保持同步、一致。所以就不难理解为什么ZooKeeper被设计成CP而不是AP特性的了。


AP wihtout C


要高可用并允许分区,则需放弃一致性。一旦网络问题发生,节点之间可能会失去联系。为了保证高可用,需要在用户访问时可以马上得到返回,则每个节点只能用本地数据提供服务,而这样会导致全局数据的不一致性。


这种舍弃强一致性而保证系统的分区容错性和可用性的场景和案例非常多。前面我们介绍可用性的时候说到过,很多系统在可用性方面会做很多事情来保证系统的全年可用性可以达到N个9,所以,对于很多业务系统来说,比如淘宝的购物,或者网上火车购票。都是在可用性和一致性之间舍弃了一致性而选择可用性。


你在12306买票的时候肯定遇到过这种场景,当你购买的时候提示你是有票的(但是可能实际已经没票了),你也正常的去输入验证码,下单了。但是过了一会系统提示你下单失败,余票不足。这其实就是先在可用性方面保证系统可以正常的服务,然后在数据的一致性方面做了些牺牲,会影响一些用户体验,但是也不至于造成用户流程的严重阻塞。


但是,我们说很多网站牺牲了一致性,选择了可用性,这其实也不准确的。就比如上面的买票的例子,其实舍弃的只是强一致性。退而求其次保证了最终一致性。也就是说,虽然下单的瞬间,关于车票的库存可能存在数据不一致的情况,但是过了一段时间,还是要保证最终一致性的。


对于多数大型互联网应用的场景,主机众多、部署分散,而且现在的集群规模越来越大,所以节点故障、网络故障是常态,而且要保证服务可用性达到N个9,即保证P和A,舍弃C(退而求其次保证最终一致性)。虽然某些地方会影响客户体验,但没达到造成用户流程的严重程度。


适合的才是最好的


上面介绍了如何CAP中权衡及取舍以及典型的案例。孰优孰略,没有定论,只能根据场景定夺,适合的才是最好的。


对于涉及到钱财这样不能有一丝让步的场景,C必须保证。网络发生故障宁可停止服务,这是保证CA,舍弃P。


比如前几年支付宝光缆被挖断的事件,在网络出现故障的时候,支付宝就在可用性和数据一致性之间选择了数据一致性,用户感受到的是支付宝系统长时间宕机,但是其实背后是无数的工程师在恢复数据,保证数据的一致性。对于其他场景,比较普遍的做法是选择可用性和分区容错性,舍弃强一致性,退而求其次使用最终一致性来保证数据的安全。



往期推荐












END

工作洽谈,商务合作,请联系我们
CAP理论,适合的才是最好的
CAP理论,适合的才是最好的
CAP理论,适合的才是最好的
这是一个有温度的公众号


我就知道你“在看”

以上是关于CAP理论,适合的才是最好的的主要内容,如果未能解决你的问题,请参考以下文章

学习Linux系统的方法有很多,适合自己的才是最好

国内几个免费CDN对比,适合你的才是最好的

学习Linux系统的方法有很多,适合自己的才是最好。

第四篇:数据管理组织-适合自己的才是最好的

第四篇:数据管理组织-适合自己的才是最好的

第四篇:数据管理组织-适合自己的才是最好的