当当开源sharding-jdbc,轻量级数据库分库分表中间件

Posted 博文视点Broadview

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了当当开源sharding-jdbc,轻量级数据库分库分表中间件相关的知识,希望对你有一定的参考价值。


小编说:本文作者张亮,当当网首席架构师,当当技术委员会成员。目前主导当当应用框架ddframe研发和推广以及技术白皮书撰写。其中ddframe的分布式作业elastic-job和数据库分片Sharding-JDBC已经正式开源。


  • 背景介绍

数据库分库分表从互联网时代开启至今,一直是热门话题。在NoSQL横行的今天,关系型数据库凭借其稳定、查询灵活、兼容等特性,仍被大多数公司作为首选数据库。因此,合理采用分库分表技术应对海量数据和高并发对数据库的冲击,是各大互联网公司不可避免的问题。

虽然很多公司都致力于开发自己的分库分表中间件,但截至目前,仍无完美的开源解决方案覆盖此领域。

  • 分库分表适用场景

分库分表用于应对当前互联网常见的两个场景——大数据量和高并发。通常分为垂直拆分和水平拆分两种。

垂直拆分是根据业务将一个库(表)拆分为多个库(表)。如:将经常和不常访问的字段拆分至不同的库或表中。由于与业务关系密切,目前的分库分表产品均使用水平拆分方式。

水平拆分则是根据分片算法将一个库(表)拆分为多个库(表)。如:按照id的最后一位以3取余,尾数是1的放入第1个库(表),尾数是2的放入第2个库(表),等等。

关系型数据库在大于一定数据量的情况下检索性能会急剧下降。在面对互联网海量数据情况时,所有数据都存于一张表,显然会轻易超过数据库表可承受的数据量阀值。这个单表可承受的数据量阀值,需根据数据库和并发量的差异,通过实际测试获得。

单纯的分表虽然可以解决数据量过大导致检索变慢的问题,但无法解决过多并发请求访问同一个库,导致数据库响应变慢的问题。所以通常水平拆分都至少要采用分库的方式,用于一并解决大数据量和高并发的问题。这也是部分开源的分片数据库中间件只支持分库的原因。

但分表也有不可替代的适用场景。最常见的分表需求是事务问题。同在一个库则不需考虑分布式事务,善于使用同库不同表可有效避免分布式事务带来的麻烦。目前强一致性的分布式事务由于性能问题,导致使用起来并不一定比不分库分表快。目前采用最终一致性的柔性事务居多。分表的另一个存在的理由是,过多的数据库实例不利于运维管理。综上所述,最佳实践是合理地配合使用分库 + 分表。

  • Sharding-JDBC简介

Sharding-JDBC是当当应用框架ddframe中,从关系型数据库模块dd-rdb中分离出来的数据库水平分片框架,实现透明化数据库分库分表访问。Sharding-JDBC是继dubbox和elastic-job之后,ddframe系列开源的第3个项目。

Sharding-JDBC直接封装JDBC API,可以理解为增强版的JDBC驱动,旧代码迁移成本几乎为零:

  1. 可适用于任何基于java的ORM框架,如:JPA, Hibernate, Mybatis, Spring JDBC Template或直接使用JDBC。

  2. 可基于任何第三方的数据库连接池,如:DBCP, C3P0, BoneCP, Druid等。

  3. 理论上可支持任意实现JDBC规范的数据库。虽然目前仅支持mysql,但已有支持Oracle,SQLServer等数据库的计划。

Sharding-JDBC定位为轻量级java框架,使用客户端直连数据库,以jar包形式提供服务,无proxy代理层,无需额外部署,无其他依赖,DBA也无需改变原有的运维方式。

Sharding-JDBC分片策略灵活,可支持等号,between,in等多维度分片,也可支持多分片键。

SQL解析功能完善,支持聚合,分组,排序,limit,or等查询,并支持Binding Table以及笛卡尔积表查询。

  • 与常见开源产品对比

为了对其他开源项目表示尊重,我们无意评论目前仍在更新中的项目。这里仅列出目前停止更新,但仍然在数据库分片领域非常有影响力的几个项目,请参见下表。


Cobar

TDDL

Sharding-JDBC

分库

未开源

分表

未开源

中间层

ORM支持

任意

任意

任意

数据库支持

MySQL

任意

任意

异构语言

可以

Java

Java

外部依赖

Diamond

通过以上表格可以看出,Cobar属于中间层方案,在应用程序和MySQL之间搭建一层Proxy。中间层介于应用程序与数据库间,需要做一次转发,而基于JDBC协议并无额外转发,直接由应用程序连接数据库,性能上有些许优势。这里并非说明中间层一定不如客户端直连,除了性能,需要考虑的因素还有很多,中间层更便于实现监控,数据迁移,连接管理等功能。

Cobar-Client、TDDL和Sharding-JDBC均属于客户端直连方案。此方案的优势在于轻便,兼容性,性能以及对DBA影响小。其中Cobar-Client的实现方式基于ORM(Mybatis)框架,其兼容性与扩展性不如基于JDBC协议的后两者。

  • 主要功能

1. 分库分表

透明化分库分表支持,仅需少量配置即可。分片策略灵活,可支持=,BETWEEN,IN等多维度分片,也可支持多分片键共用。SQL解析功能完善,支持聚合,分组,排序,Limit,OR等查询,并且支持Binding Table以及笛卡尔积的表查询。

2. 读写分离

为了缓解数据库压力,将写入和读取操作分离为不同数据源,写库称为主库,读库称为从库,一主库可配置多从库。同一线程且同一数据库连接内,如有写入操作,以后的读操作均从主库读取,用于保证数据一致性。支持基于Hint的强制主库路由。

3. 柔性事务

在分布式场景下,ACID事务的性能会急剧下降,因此互联网公司大多采用最终一致性的柔性事务。主要分为BED和TCC两种。Sharing-JDBC目前实现了BED(最大努力送达型),未来版本将会实现TCC。

4. 分布式主键生成器

传统数据库软件开发中,主键自动生成技术是基本需求。而各大数据库对于该需求也提供了相应的支持,比如MySQL的自增键。 对于MySQL而言,分库分表之后,不同表生成全局唯一的Id是非常棘手的问题。因为同一个逻辑表内的不同实际表之间的自增键是无法互相感知的, 这样会造成重复Id的生成。我们当然可以通过约束表生成键的规则来达到数据的不重复,但是这需要引入额外的运维力量来解决重复性问题,并使框架缺乏扩展性。

目前有许多第三方解决方案可以完美解决这个问题,比如UUID等依靠特定算法自生成不重复键,或者通过引入Id生成服务等。 但也正因为这种多样性导致了Sharding-JDBC如果强依赖于任何一种方案就会限制其自身的发展。

基于以上的原因,最终采用了以JDBC接口来实现对于生成Id的访问,而将底层具体的Id生成实现分离出来。

  • 实现原理

前文已介绍了Sharding-JDBC是实现了JDBC协议的jar文件。基于JDBC协议的实现与基于MySQL等数据库协议实现的中间层略有差别。

无论使用哪种架构,核心逻辑均极为相似,除了协议实现层不同(JDBC或数据库协议),都会分为分片规则配置、SQL解析、SQL改写、SQL路由、SQL执行以及结果归并等模块。

Sharding-JDBC的整体架构图参见下图。当当开源sharding-jdbc,轻量级数据库分库分表中间件

1. 分片规则配置

Sharding-JDBC的分片逻辑非常灵活,支持分片策略自定义、复数分片键、多运算符分片等功能。

如:根据用户id分库,根据订单id分表这种分库分表结合的分片策略;或根据年分库,月份 + 用户区域id分表这样的多片键分片。

Sharding-JDBC除了支持等号运算符进行分片,还支持in,between运算符分片,提供了更加强大的分片功能。

Sharding-JDBC提供了spring命名空间用于简化配置,以及规则引擎用于简化策略编写。由于目前刚开源分片核心逻辑,这两个模块暂未开源,待核心稳定后将会开源其他模块。

2. JDBC规范重写

Sharding-JDBC对JDBC规范的重写思路是针对DataSource、Connection、Statement、PreparedStatement和ResultSet五个核心接口封装,将多个真实JDBC实现类集合(如:MySQL JDBC实现,DBCP JDBC实现等)纳入Sharding-JDBC实现类管理。

Sharding-JDBC尽量最大化实现JDBC协议,包括addBatch这种在JPA中会使用的批量更新功能。但分片JDBC毕竟与原生JDBC不同,所以目前仍有未实现的接口,包括Connection游标,存储过程和savePoint相关、ResultSet向前遍历和修改等不太常用的功能。此外,为了保证兼容性,并未实现JDBC 4.1及其后发布的接口(如:DBCP 1.x版本不支持JDBC 4.1)。

3. SQL解析

SQL解析作为分库分表类产品的核心,性能和兼容性是最重要的衡量指标。目前常见的SQL解析器主要有fdb,jsqlparser和Druid。Sharding-JDBC目前使用Druid作为SQL解析器。经实际测试,Druid解析速度是另外两个解析器的几十倍。但Druid毕竟是以高性能、可监控的连接池为首要目标,定制化基于分片SQL解析能进一步的提升性能,因此Sharding-JDBC已着手开发定制化的SQL解析器,将在近期发布。

目前Sharding-JDBC支持join、aggregation(包括avg)、order by、 group by、limit、甚至or查询等复杂SQL的解析。目前不支持union、部分子查询、函数内分片等不太应在分片场景中出现的SQL解析。

4. SQL改写

SQL改写分为两部分,一部分是将分表的逻辑表名称替换为真实表名称。另一部分是根据SQL解析结果替换一些在分片环境中不正确的功能。这里具两个例子:

第1个例子是avg计算。在分片的环境中,以avg1 + avg2 + avg3 / 3计算平均值并不正确,需要改写为 (sum1 + sum2 + sum3)  / (count1 + count2 + count3)。这就需要将包含avg的SQL改写为sum和count,然后再结果归并时重新计算平均值。

第2个例子是分页。假设每10条数据为一页,取第2页数据。在分片环境下获取limit 10, 10,归并之后再根据排序条件取出前10条数据是不正确的结果。正确的做法是将分条件改写为limit 0, 20,取出所有前2页数据,再结合排序条件算出正确的数据。可以看到越是靠后的Limit分页效率就会越低,也越浪费内存。有很多方法可避免使用limit进行分页。比如构建记录行记录数和行偏移量的二级索引,或使用上次分页数据结尾id作为下次查询条件的分页方式。

5. SQL路由

SQL路由是根据分片规则配置,将SQL定位至真正的数据源。主要分为单表路由、Binding表路由和笛卡尔积路由。

单表路由最为简单,但路由结果不一定落入唯一库(表),因为支持根据between和in这样的操作符进行分片,所以最终结果仍然可能落入多个库(表)。

Binding表可理解为分库分表规则完全一致的主从表。举例说明:订单表和订单详情表都根据订单id作为分片键,任意时刻分片逻辑均相同。这样的关联查询和单表查询难度和性能相当。

笛卡尔积查询最为复杂,因为无法根据Binding关系定位分片规则的一致性,所以非Binding表的关联查询需要拆解为笛卡尔积组合执行。查询性能较低,而且数据库连接数较高,需谨慎使用。

6. SQL执行

路由至真实数据源后,Sharding -JDBC将采用多线程并发执行SQL,并完成对addBatch等批量方法的处理。

7. 结果归并

结果归并包括4类:普通遍历类、排序类、聚合类和分组类。每种类型都会先根据分页结果跳过不需要的数据。

普通遍历类最为简单,只需按顺序遍历ResultSet的集合即可。

排序类结果将结果先排序再输出,因为各分片结果均按照各自条件完成排序,所以采用归并排序算法整合最终结果。

聚合类分为3种类型,比较型,累加型和平均值型。比较型包括max和min,只返回最大(小)结果。累加型包括sum和count,需要将结果累加后返回。平均值则是通过SQL改写的sum和count计算,相关内容已在SQL改写涵盖,不再赘述。

分组类最为复杂,需要将所有的ResultSet结果放入内存,使用map-reduce算法分组,最后根据排序和聚合条件做相关处理。最消耗内存,最损失性能的部分即是此,可以考虑使用limit合理的限制分组数据大小。

结果归并部分目前并未采用管道解析的方式,之后会针对这里做更多改进。

  • 性能

路由结果在单库单表的性能测试报告:

查询操作:Sharding-JDBC的TPS为JDBC的TPS的99.8%。

插入操作:Sharding-JDBC的TPS为JDBC的TPS的90.2%。

更新操作:Sharding-JDBC的TPS为JDBC的TPS的93.1%。

可以看到,Sharding-JDBC性能损失非常低。

路由结果在多库多表的性能测试报告:

查询操作:TPS双库比单库可以增加大约94%的性能。

插入操作:TPS双库比单库可以增加大约60%的性能。

更新操作:TPS双库比单库可以增加大约89%的性能。

结果表明,Sharding-JDBC可有效利用多线程与分布式资源大幅度提升性能。

更多详细情况可查看Sharding-JDBC的性能测试报告。

  • 开源理念

目前国内很多开源产品都在公司内部经受过时间的考验,然后剥离业务逻辑和敏感代码,再开源贡献给社区。这样做的优点是开源的产品相对成熟。但缺点也不可避免,主要有:

  1. 后续支持匮乏。产品已经满足了该公司的业务场景需求,缺乏后续提升的动力。文档、支持也会相对较少,甚至出现文档和代码不同步的状况。

  2. 与该公司业务场景耦合较为严重。大部分框架产品都是为了解决特定的问题。比如:有的公司可能并不需要分表;有的公司只需支持几种分片策略就好。

  3. 开源不完整。和公司业务耦合紧密的部分不会开源。

  4. 缺乏粘度。较为成型的项目由于功能繁多、代码结构复杂,社区志愿者难于扩展或修改核心逻辑。如果测试覆盖率不够,难以保证修改后的代码质量。以上一系列问题会导致项目对社区的粘度不高,难于找寻可合作开发的志愿者。

  5. 分支众多难于维护。由于开源之后公司缺乏持续提升的动力,和本公司关系不大的需求功能得不到重视,导致各公司都开发自己的分支。开源项目虽然一开始给社区注入了新鲜思想,但最终并没有吸取社区精华。如:Dubbo一出现即引起了相当多的关注,而各公司都有自己的版本,如当当的DubboX,但最终Dubbo并未能持续发展。

我们考虑全新的开源策略,在Sharding-JDBC刚完成初版的时候,即向社区和当当内部同时推广。这样做的好处有:

  1. 后续支持完善。Sharding-JDBC与当当内部落地绑定,将会在当当内部和社区同时提供支持。虽然无法提供社区需求的优先级高于当当内部的承诺,但我们会综合考虑社区与内部的需求,以更高的视角,尽量整合与优化升级路线。

  2. 完整开源。代码的snapshot版本都会首先出现在github上。

  3. 共同发展。Sharding-JDBC目前代码较为简单。使社区开源爱好者能更加轻松的理解代码核心。为以后的持续发展奠定基础。并且Sharding-JDBC也会吸纳社区精华,让更多地爱好者参与代码贡献。

真诚邀请感兴趣的技术人员关注和参与。

◆  ◆  ◆  ◆  ◆  

2016年度最受欢迎中国开源软件评正在进行,如果sharding-jdbc在现在或未来可以帮助到您,请投上宝贵的一票吧。

网址:

http://www.oschina.net/project/top_cn_2016?sort=1

二维码:

当当开源sharding-jdbc,轻量级数据库分库分表中间件

您也可以点击阅读原文跳转~

当当开源sharding-jdbc,轻量级数据库分库分表中间件


 

博文视点

您阅读的专业智库

了解更多本书详情请点击阅读原文

长按二维码轻松关注


以上是关于当当开源sharding-jdbc,轻量级数据库分库分表中间件的主要内容,如果未能解决你的问题,请参考以下文章

Sharding-JDBC分库分表使用实例

轻量级数据库中间件利器Sharding-JDBC深度解析(有彩蛋)

当当架构部张亮:继开源Elastic-Job后,带你近距离了解数据库分库分表中间件sharding-jdbc

技术访谈:Sharding-JDBC 未来将更加多样化

分布式数据库中间件之sharding-jdbc

sharding-jdbc-how2work 当当的sharding-jdbc剖析