Go(08)实现堆排序

Posted 独立开发者日记

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Go(08)实现堆排序相关的知识,希望对你有一定的参考价值。

当前浏览器不支持播放音乐或语音,请在微信或其他浏览器中播放 Go(08)实现堆排序

阅读本文大约15分钟

本文难度:

前文介绍了golang实现基本的四中排序,本文带领大家实现堆排序,堆排序是效率很高的算法,通过取出大根堆堆顶元素从而实现排序的算法。
该算法以出色的效率著称,时间复杂度为O (nlgn)

堆排序描述

什么是大根堆

1 大根堆是一颗完全二叉树
2 该完全二叉树,根节点一定大于等于其左右子节点,并且大于等于其子树所有节点。

完全二叉树

完全二叉树是相对于满二叉树来讲的,对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。

满二叉树:

一棵深度为 k,且有 2k - 1 个节点称之为满二叉树,即每一层上的节点数都是最大节点数。

也就是说完全二叉树可以这么理解,在一棵二叉树中,除最后一层外,若其余层都是满的,并且最后一层或者是满的,或者是在右边缺少连续若干节点,则此二叉树为完全二叉树(Complete Binary Tree)

下图就是一个完全二叉树
Go(08)实现堆排序

算法图解

假设有序列
下标 | 0 | 1 | 2 | 3 | 4 | 5 |
数值 | 6 | 1 | 0 | 5 | 2 | 9 |
将该序列构造成上图的二叉树,首先从最后一个非叶子结点(也就是下标2的节点元素0)开始,将其所在子树调节为大根堆
Go(08)实现堆排序

由于9比0大,所以二者交换位置,这样下标2所在子树就变为大根堆了。接下来从右往左,从下往上依次处理所有非叶子节点所在子树,使其依次形成大根堆。下面处理下标为1的子树。
Go(08)实现堆排序

下标1的两个子节点中5比2大,选择最大的子节点5和1比较,由于5比1大,所以二者交换位置,这样下标1所在子树就变为大根堆了。接下来处理下标0所在子树,使其成为大根堆。

Go(08)实现堆排序

同样选择下标0最大的子节点9和下标0的元素6交换位置,这样最大元素9放在下标0的位置,由于6和9交换位置,还要考虑元素6所在的下标为1的子树是否因为交换导致失去大根堆特性,如果6比其子节点小,则继续将6下移,直到找到合理位置。此时6比其子节点0大,所以不需要移动了。

下标0就是根节点,到此为止一颗大根堆构造完成。
接下来将根节点9和最后一个元素交换,n为最后一个元素。这样调节前n-1节点,是这些节点构成大根堆。
具体操作如下图
交换最后一个元素和根节点
Go(08)实现堆排序

将最后一个元素排出不再比较,比较前n-1个元素,重新构造大根堆。
Go(08)实现堆排序

以此类推,
将n-1个节点调整为大根堆
Go(08)实现堆排序

前n-1调节为大根堆后,将根元素和第n-1元素交换

将第n-1个元素取出。

这样最后两个元素分别为6,9,是从小到大拍好的顺序,继续使前n-2节点形成大根堆。直到n=1

算法实现

首先定义一个HeapSort类,然后设计一个成员函数adjustHeap,该函数主要实现将index所在位置的子树构造成大根堆。
adjustHeap的三个参数分别为一段连续的数据序列,index表示子树根所在位置,length表示要排序的长度。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
type HeapSort struct {
}

//调整index为根的子树,此时index的左右子树都是大根树
//比较index和其左右节点,将index根节点设置为最大的元素
//可能会引起子树失效,所以会循环处理修改的子树
func (hs *HeapSort) adjustHeap(array []int, index, length int) {
//index 的左右子节点
leftchild := index*2 + 1
rightchild := leftchild + 1
maxchild := leftchild

for {

//如果左节点比长度大,说明该节点为子节点
if leftchild > length-1 {
break
}
//右节点存在,且比左节点大
if rightchild <= length-1 && array[rightchild] > array[maxchild] {
maxchild = rightchild
}
//index 元素比最大子节点大,则不需要交换,退出
if array[index] > array[maxchild] {
break
}

//比较自己元素和最大节点的元素,做交换
hs.swap(array, index, maxchild)
index = maxchild
leftchild = index*2 + 1
rightchild = leftchild + 1
maxchild = leftchild
}

}


接下来实现一个小函数,用来交换两个位置的元素

1
2
3
4
5
6
7
8
9
10
func (hs *HeapSort) swap(array []int, i, j int) {
if i >= len(array) || j >= len(array) {
return
}

temp := array[i]
array[i] = array[j]
array[j] = temp

}


接下来实现将n个元素排序成大根堆,并且交换根元素和第n个元素,并将第n各元素排出,继续比较n-1个元素构造大根堆的逻辑

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
func (hs *HeapSort) sort(array []int) {

//每次循环后长度减少,因为每次循环最后元素都变为最大
for length := len(array); length > 1; length-- {
//最后一个非叶子节点索引
lastnode := length/2 - 1
//从最后一个非叶子节点一次从左到右,从下到上排序子树
//循环过后得到一个大顶堆(此时还不是大根堆)
for i := lastnode; i >= 0; i-- {
hs.adjustHeap(array, i, length)
}

//将堆顶元素放到末尾
hs.swap(array, 0, length-1)
fmt.Println(array)
}

}


ok,算法完成,可以进行测试了

1
2
3
4
5
6
func main() {
//数组初始化
array := []int{6, 1, 0, 5, 2, 9, 6}
hs := new(HeapSort)
hs.sort(array)
}


结果如下,打印的是每次排出元素后序列的结果

1
2
3
4
5
6
[6 5 6 1 2 0 9]
[0 5 6 1 2 6 9]
[2 5 0 1 6 6 9]
[1 2 0 5 6 6 9]
[0 1 2 5 6 6 9]
[0 1 2 5 6 6 9]


目前为止,堆排序介绍完了,欢迎下载源码

源码在阅读原文中

以上是关于Go(08)实现堆排序的主要内容,如果未能解决你的问题,请参考以下文章

图解算法基础--快速排序,附 Go 代码实现

GCTT 出品 | 阅读挑战:Go 的堆排序

选择排序(简单选择排序堆排序的算法思想及代码实现)

堆排序

Java排序算法 - 堆排序的代码

冒泡排序之go语言实现