pytorch学习-3:线性回归
Posted Paul-Huang
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pytorch学习-3:线性回归相关的知识,希望对你有一定的参考价值。
线性回归
1. 问题描述
一个一元二次函数: y = a x 2 + b y=ax^2+b y=ax2+b, 我们给 y y y 数据加上一点噪声来更加真实的展示它。
import torch
import matplotlib.pyplot as plt
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1)
# 画图
plt.scatter(x.data.numpy(), y.data.numpy())
plt.show()
1.2 建立神经网络
建立一个神经网络我们可以直接运用 torch 中的体系。 先定义所有的层属性(__init__()
), 然后再一层层搭建(forward(x)
)层于层的关系链接。
import torch
import torch.nn.functional as F # 激励函数
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__() #继承__init__功能
# 定义每层用什么样的形式
self.hidden = torch.nn.Linear(n_feature , n_hidden) #隐藏层线性输出
self.predict = torch.nn.Linear(n_hidden, n_output) #输出层线性输出
def forward(self, x): # 这同时也是 Module 中的 forward 功能
# 正向传播,神经网络分析出输出值
x = F.relu(self.hidden(x)) # 激励函数(隐藏层的线性值)
x = self.predict(x) # 输出值
return x
# 引出网络
net = Net(n_feature=1, n_hidden=10, n_output=1)
print(net)
1.3 训练网络
for t in range(200):
prediction = net(x) # 喂给 net 训练数据 x, 输出预测值
loss = loss_func(prediction, y) # 计算两者的误差
optimizer.zero_grad() # 清空上一步的残余更新参数值
loss.backward() # 误差反向传播, 计算参数更新值
optimizer.step() # 将参数更新值施加到 net 的 parameters 上
1.4 可视化
if t % 5 == 0:
# plot and show learning process
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict='size': 20, 'color': 'red')
plt.pause(0.1)
2. 整体代码
- reg_test.py
import torch
import matplotlib.pyplot as plt
from Net import net
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + 0.2*torch.rand(x.size())
# 画图
plt.scatter(x.data.numpy(), y.data.numpy())
plt.show()
# 训练网络
optimizer = torch.optim.SGD(net.parameters(), lr=0.3) # 传入 net 的所有参数, 学习率
loss_func = torch.nn.MSELoss() # 预测值和真实值的误差计算公式 (均方差)
plt.ion() # 画图
plt.show()
for t in range(200):
prediction = net(x) # 喂给 net 训练数据 x, 输出预测值
loss = loss_func(prediction, y) # 计算两者的误差
optimizer.zero_grad() # 清空上一步的残余更新参数值
loss.backward() # 误差反向传播, 计算参数更新值
optimizer.step() # 将参数更新值施加到 net 的 parameters 上
# 数据可视化
if t % 5 == 0:
# plot and show learning process
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict='size': 20, 'color': 'red')
plt.pause(0.1)
plt.ioff()
plt.show()
- Net.py
import torch
import torch.nn.functional as F # 激励函数
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__() #继承__init__功能
# 定义每层用什么样的形式
self.hidden = torch.nn.Linear(n_feature , n_hidden) #隐藏层线性输出
self.predict = torch.nn.Linear(n_hidden, n_output) #输出层线性输出
def forward(self, x): # 这同时也是 Module 中的 forward 功能
# 正向传播,神经网络分析出输出值
x = F.relu(self.hidden(x)) # 激励函数(隐藏层的线性值)
x = self.predict(x) # 输出值
return x
# 引出网络
net = Net(n_feature=1, n_hidden=10, n_output=1)
print(net)
参考
以上是关于pytorch学习-3:线性回归的主要内容,如果未能解决你的问题,请参考以下文章
翻译: 3.2. 从零开始实现线性回归 深入神经网络 pytorch