基于新浪微博的⽇志数据分析

Posted 一加六

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于新浪微博的⽇志数据分析相关的知识,希望对你有一定的参考价值。

["beCommentWeiboId":"","beForwardWeiboId":"","catchTime":"1387159495","co mmentCount":"1419","content":"分享图
片","createTime":"1386981067","info1":"","info2":"","info3":"","mlevel":"" ,"musicurl":[],"pic_list": ["http://ww3.sinaimg.cn/thumbnail/40d61044jw1ebixhnsiknj20qo0qognx.jpg"]," praiseCount":"5265","reportCount":"1285","source":"iPad客户
端","userId":"1087770692","videourl": [],"weiboId":"3655325888057474","weiboUrl":"http://weibo.com/1087770692/An dhixO7g"] 2 ["beCommentWeiboId":"","beForwardWeiboId":"","catchTime":"1387159495","co mmentCount":"91","content":"行走:#去远方发现自己#@费勇主编,跨界明星联合执笔,
分享他们观行思趣的心发现、他们的成长与心路历程,当当网限量赠送出品人@陈坤抄诵印刷版
《心经》,赠完不再加印哦!详情请戳:
http://t.cn/8k622Sj","createTime":"1386925242","info1":"","info2":"","info 3":"","mlevel":"","musicurl":[],"pic_list": ["http://ww4.sinaimg.cn/thumbnail/b2336177jw1ebi6j4twk7j20m80tkgra.jpg"]," praiseCount":"1","reportCount":"721","source":"","userId":"2989711735","vi deourl": [],"weiboId":"3655091741442099","weiboUrl":"http://weibo.com/2989711735/An 7bE639F"]

beCommentWeiboId 是否评论
beForwardWeiboId 是否是转发微博
catchTime 抓取时间
commentCount 评论次数
content 内容
createTime 创建时间
info1 信息字段1
info2信息字段2
info3信息字段3
mlevel no sure musicurl ⾳乐链接
pic_list 照⽚列表(可以有多个)
praiseCount 点赞⼈数
reportCount 转发⼈数
source 数据来源
userId ⽤户id
videourl 视频链接
weiboId 微博id
weiboUrl 微博⽹址

在hadoop创建目录

hadoop dfs -mkdir weibo
hadoop fs -put ./weibo/*  
hadoop fs -ls /weibo

hive创建库

create database if not exists weibo;
use weibo; 
create external table weibo(json string) location '/weibo';
select * from weibo limit 3;

处理json格式数据使用到get_json_object()和json_tuple(),其中两者都只认最外层是花括号 才能正常解析.最外层是时 [ ] 不能解析,
当最外层时 [] 时可使用substring方法去掉最外层 [ ]

select get_json_object(substring(json,2,length(json)-1),'$.userId') from weibo limit 1;

统计需求

微博总量和独立用户数

#总量
select count(*) from weibo;
#独立用户数
select count(distinct(get_json_object(a.j,'$.userId'))) 
from 
(select substring(json,2,length(json)-1) as j from weibo) a;



用户所有微博被转发的总数,输出前3个用户
使用json_tuple提取多个字段

select b.id,sum(b.cnt) as bsum 
from 
(select 
json_tuple(a.j,'userId','reportCount') as (id,cnt) 
from 
(select substring(json,2,length(json)-1) as j from weibo) a) 
b 
group by b.id
order by bsum desc
limit 3;


被转发次数最多的前3条微博,输出用户id

select 
get_json_object(a.j,'$.userId') as id,
cast(get_json_object(a.j,'$.reportCount') as INT) as cnt 
from 
(select substring(json,2,length(json)-1) as j from weibo) a 
order by cnt desc 
limit 3;

每个用户发布的微博总数,存储到临时表

create table weibo_uid_wbcnt( 
userid string, wbcnt int ) 
row format delimited 
fields terminated by '\\t'; 
insert overwrite table weibo_uid_wbcnt select get_json_object(a.j,'$.userId'),count(1) 
from 
(select substring(json,2,length(json)-2) as j from weibo) a 
group by get_json_object(a.j,'$.userId'); 

select * from weibo_uid_wbcnt limit 10;

统计带图片的微博数

select count(1) 
from 
(select substring(json,2,length(json)-2) as j from weibo) a 
where get_json_object(a.j,'$.pic_list') like '%http%'; 

统计使用iphone发微博的独立用户数

select count(distinct get_json_object(a.j,'$.userId')) 
from 
(select substring(json,2,length(json)-2) as j from weibo) a 
where lower(get_json_object(a.j,'$.source')) like '%iphone%';

微博中评论次数小于1000的用户id和数据来源,放入视图

 create view weibo_view as 
 select get_json_object(a.j,'$.userId') as id,get_json_object(a.j,'$.source') as source 
 from 
 (select substring(json,2,length(json)-2) as j from weibo) a 
 where get_json_object(a.j,'$.commentCount')<1000; 
 select * from weibo_view limit 10;

统计上条视图中数据来源“ipad客户端”的用户数目

select count(distinct id) as cnt from weibo_view where source='iPad客户端';

将微博的点赞数和转发数求和,降序,取前10条。

public class DemoTest1 extends UDF  
public Integer evaluate(Integer num1,Integer num2) 
try 
	return num1+num2; 
	catch (Exception e) 
	return null;  
	 
 
create temporary function wb as 'DemoTest1';

select wb(cast(get_json_object(a.j,'$.praiseCount') as int),cast(get_json_object(a.j,'$.reportCount') as int)) as cnt 
from 
(select substring(json,2,length(json)-2) as j from weibo) a 
order by cnt desc limit 10;

⽤户微博内容中出现iphone关键词的最⼤次数

public class DemoTest2 extends UDF  
	public int evaluate(String content,String word) 
		int count = 0; 
		if(content != null&&content.length()>0) 
		String[] array = content.split(word); 
		count = array.length-1; 
		 
	return count; 
	 

create temporary function wcount as 'DemoTest2';


select b.id,max(b.cnt) as cn 
from 
(select get_json_object(a.j,'$.userId') as id,wcount(get_json_object(a.j,'$.content'),'iphone') as cnt 
from 
(select substring(json,2,length(json)-2) as j from weibo) a) b 
group by b.id 
order by cn desc limit 10;

以上是关于基于新浪微博的⽇志数据分析的主要内容,如果未能解决你的问题,请参考以下文章

如何通过python调用新浪微博的API来爬取数据

python如何抓取新浪微博的微博内容

如何通过python调用新浪微博的API

python 新浪微博的登录协助,可以处理验证码所需的情况。(新浪微博登录实现,包含验证码解析)

获取新浪微博的Access_token

android版,请问如何关闭手机新浪微博的推送新闻