dijkstra算法模板(优先队列优化)

Posted JobsandCzj

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了dijkstra算法模板(优先队列优化)相关的知识,希望对你有一定的参考价值。

dijkstra算法是由荷兰计算机科学家狄克斯特拉1959 年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有

向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。 


常规的dijkstra算法复杂度较高,为O(n^2),因为要花大量时间来找当前已知的距顶点距离最小的值,所以用优先队列(值小的先出队列)来优化,可省大量时间。

 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<stack>
#include<queue>
#include<vector>
using namespace std;


#define INF  0x3f3f3f3f   //定义一个很大的数


struct Node

int num,val;   //存放结点编号和到初始点的距离 
nod;


priority_queue<Node> qq;;   //优先从小到大


bool operator < (Node a,Node b)

if(a.val == b.val) return a.num>b.num;
return a.val>b.val;              //先出小 



int book[100];  //检查这个点是否用过 
int dis[100];     //到原点最短距离 
int D[100][100];  //记录路径长度
int V,E; 


int main()

int a,b,d;
while(cin>>V>>E && V&& E)  //输入顶点数和边数 

while(!qq.empty()) qq.pop(); //清空
memset(book,0,sizeof(book));
memset(D,-1,sizeof(D)); 

for(int i=0;i<E;i++)

cin>>a>>b>>d;
D[a][b] = D[b][a] = d;


for(int i=2;i<=V;i++)
dis[i]=INF;

dis[1]=0;
nod.num=1;
nod.val=0;

qq.push(nod);   //将起点放入队列 

while(!qq.empty())  //不为空时 


for(int i=2;i<=V;i++)

if(D[qq.top().num][i] != -1  &&dis[i]>dis[qq.top().num] + D[qq.top().num][i]) 


dis[i]=dis[qq.top().num] + D[qq.top().num][i];
nod.num=i; nod.val=dis[i];
qq.push(nod);



qq.pop();


for(int i=1;i<=V;i++)

cout<<"初始点到"<<i<<"点的距离为:"<<dis[i]<<endl;
 


return 0;
 
 


以上是关于dijkstra算法模板(优先队列优化)的主要内容,如果未能解决你的问题,请参考以下文章

常用最短路优化算法及例题(附模板)——-SPFA和Dijkstra

Dijkstra算法介绍及其优先队列优化和斐波那契堆优化

dijkstra模板(好像是斐波那契额堆优化,但我为什么看起来像优先队列优化,和spfa一样)

优先队列(堆优化)的dijkstra算法

Dijkstra普通算法及优先队列优化

最短路Dijkstra+ 链式前向星+ 堆优化(优先队列)