用Python进行数据分析,就要掌握什么技术?

Posted 朝阳区靓仔_James

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了用Python进行数据分析,就要掌握什么技术?相关的知识,希望对你有一定的参考价值。

本文是针对数据分析写的Python教程,文章内容针对以下初学者遇到的问题:

  • 需要学多久的Python?
  • 需要学到什么程度的Python?
  • 学Python的最优课程和书籍有什么?
  • 为了处理数据集,我需要精通Python吗?

在开始正式的分享之前我们先来看一下,数据分析的工作流程:

一、消除误解

很多人因为想做数据分析,从而开始了python的编程学习,每天沉迷于代码和书籍之间。但是最后发现学到的只是python用于软件的开发,并非是数据分析。

Python实际针对数据分析的学习是库,用库来解决一系列的数据分析问题。所以建议就是数据分析方向并没有必要精通Pythn。

实际的学习Python过程就是:

  • 掌握Python基础;
  • 学习Numpy;
  • 学习Pandas
  • 学习Matplib

建议是掌握Python基础之后按照上述顺序进行库的学习,很多人会还没学好一个,就进入下一个从而导致学习失败。

二、数据分析之Python基础


至于Python基础需要掌握什么,请大家对照图片的基础和链接当中的课程进行规划和学习,建议Python基础如果你每天学习时间比较多,超过3小时的话,学习时长为20天内之内。少于三小时按照进度以此类推。

其次就是机器学习相关知识大家也是要掌握的,不需要你明白推导公式是怎么推的,但是原理要知道。

二、数据分析之书籍推荐

提醒一下,不要买数据分析的工具书,所有工具书的内容都可以百度一下解决,一般来说工具书的内容也比较浅显。建议大家选择实战类书籍,毕竟数据分析也离不开实战。

数据分析类书籍推荐:

《增长黑客》《社会调查设计与数据分析》(这本墙裂推荐,理论+实际,让我们有效学习)《深入浅出数据分析》

产品思维类:

建议大家听《梁宁的产品课》

本文上述内容均适合0-3年的数据分析师,如果你想进阶的话,还要学好数学、统计学、数据挖掘。回答这篇内容的时候,也看了很多人整理的内容,看到一份还不错比较全面的分享给大家:


书籍和知识体系都分析完了,最后身为数据分析师的你们,一定要知道实战真的很重要。但是大家基本都苦恼,哪找数据去?哪找实战去?我们可以去打比赛,打比赛也可以让我们对数据有一定的理解,更深入到业务。平台:Kaggle、阿里天池、DataFountain;

三、【重要】有关数据分析的Python库

3.1 NumPy

这是最常用的数据分析库了,准确来说是一个数学计算库,包括我们刚刚提到的Pandas也是依赖于Numpy的。

  • 我们需要学习的内容是了解NumPy
  • 知道数组的属性、形状和类型
  • 应用Numpy实现数组的基本操作
  • 应用随机数组的创建实现正态分布应用
  • 应用Numpy实现数组的逻辑运算
  • 应用Numpy实现数组的统计运算
  • 应用Numpy实现数组之间的运算

3.2 Pandas

这是为了数据建模分析而生的工具库,内含许多的数据模型,也有很多其他库的优势。学习顺序就是先学NumPy再来学Pandas,需要学习知识点如下:

  • 了解Numpy与Pandas的不同
  • 说明Pandas的Series与Dataframe两种结构的区别
  • 了解Pandas的MultiIndex与panel结构
  • 应用Pandas实现基本数据操作
  • 应用Pandas实现数据的合并
  • 应用crosstab和pivot_table实现交叉表与透视表
  • 应用groupby和聚合函数实现数据的分组与聚合
  • 了解Pandas的plot画图功能
  • 应用Pandas实现数据的读取和存储

3.3 Matplotlib

刚刚提到了一些,他是一个2D绘图库,一堆数据摆在面前的时候,我们可以将它便捷转化成图形。本文中提到的前三个库,就是数据分析Python库中的三驾马车。需要学习内容是:

  • 应用Matplotlib的基本功能实现图形显示
  • 应用Matplotlib实现多图显示
  • 应用Matplotlib实现不同画图种类

大家只要记住可视化是在整个数据挖掘中的关键辅助工具就可以了,所以要学习怎么来画图。

3.4 Scipy

Scipy也是依赖Numpy的,Scipy是一个科学计算工具库。

3.5 StatsModels

StatsModels 包含了许多的统计模型,线性模型、广义线性模型、方差分析、时间序列(Pandas 也可以做,因为 StatsModels 又依赖于 Pandas)和线性混合效用模型等,在统计方面有其独特的优势。

四、总结

以上基本上就是数据分析方向Python学习的内容。对于学习步骤也就是先Numpy或者是Matplotlib,第二学Pandas。

在书《大数据时代》中,提到了这样一种情况:玛丽莎·迈尔在任谷歌高管期间,有时会要求员工测试41种蓝色的阴影效果,哪种被人们使用最频繁从而决定网页工具栏的颜色。这是陷入“数据之上”的误区,这样的数据是毫无意义,访客能不能看出细微的差别不说,几乎没有人会因为阴影效果的不同而决定访问/不访问这一网页。

所以大家还要多多累积经验,以上内容足以学习之后,基本就成为了有数据分析思维的分析师,但是知识和实战一定是是有差距的。我们可以思考的业务场景是:

  • 百度首页好物推荐,让你来设计指标衡量这个功能的话,你要怎么做?
  • 一个APP,从来没有用户的行为分析,那么要开始进行数据埋点,你会怎么设计?
  • 知乎要大力推广视频功能,基于此你如何分析?
  • 各类音乐软件都会有每日歌曲和电台推荐,你怎么设计指标衡量功能?

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、Python必备开发工具

三、精品Python学习书籍

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

四、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

五、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

六、Python练习题

检查学习结果。

七、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

以上是关于用Python进行数据分析,就要掌握什么技术?的主要内容,如果未能解决你的问题,请参考以下文章

快速掌握用python写并行程序

玛丽亚娜英文名怎么写?

快速掌握用python写并行程序,干货满满

数据挖掘需要哪些技能

P1000 超级玛丽游戏 题解

JAVA 实现《超级玛丽升级版》游戏