金融量化利用ccxt爬取交易所的交易历史烛线图数据信息
Posted Better Bench
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了金融量化利用ccxt爬取交易所的交易历史烛线图数据信息相关的知识,希望对你有一定的参考价值。
1 问题
爬取各个交易所的烛线图数据,采用ccxt框架的fetch_ohlcv接口。接口手册:http://cw.hubwiz.com/card/c/ccxt-dev-manual/1/7/1/
2 Python实现
import pandas as pd
import time
import os
import datetime
import ccxt
pd.set_option('expand_frame_repr', False) #
TIMEOUT = 6 # 6 second
BITFINEX_LIMIT = 5000
BITMEX_LIMIT = 500
BINANCE_LIMIT = 500
def crawl_exchanges_datas(exchange_name, symbol, start_time, end_time):
"""
爬取交易所数据的方法.
:param exchange_name: 交易所名称.
:param symbol: 请求的symbol: like BTC/USDT, ETH/USD等。
:param start_time: like 2018-1-1
:param end_time: like 2019-1-1
:return:
"""
exchange_class = getattr(ccxt, exchange_name) # 获取交易所的名称 ccxt.binance
exchange = exchange_class() # 交易所的类. 类似 ccxt.bitfinex()
print(exchange)
# exit()
current_path = os.getcwd()
file_dir = os.path.join(current_path, exchange_name, symbol.replace('/', ''))
if not os.path.exists(file_dir):
os.makedirs(file_dir)
start_time = datetime.datetime.strptime(start_time, '%Y-%m-%d')
end_time = datetime.datetime.strptime(end_time, '%Y-%m-%d')
start_time_stamp = int(time.mktime(start_time.timetuple())) * 1000
end_time_stamp = int(time.mktime(end_time.timetuple())) * 1000
print(start_time_stamp) # 1529233920000
print(end_time_stamp)
limit_count = 500
if exchange_name == 'bitfinex':
limit_count = BITFINEX_LIMIT
elif exchange_name == 'bitmex':
limit_count = BITMEX_LIMIT
elif exchange_name == 'binance':
limit_count = BINANCE_LIMIT
while True:
try:
print(start_time_stamp)
data = exchange.fetch_ohlcv(symbol, timeframe='1m', since=start_time_stamp, limit=limit_count)
df = pd.DataFrame(data)
df.rename(columns=0: 'open_time', 1: 'open', 2: 'high', 3: 'low', 4: 'close', 5: 'volume', inplace=True)
start_time_stamp = int(df.iloc[-1]['open_time']) # 获取下一个次请求的时间.
filename = str(start_time_stamp) + '.csv'
save_file_path = os.path.join(file_dir, filename)
print("文件保存路径为:%s" % save_file_path)
# exit()
df.set_index('open_time', drop=True, inplace=True)
df.to_csv(save_file_path)
if start_time_stamp > end_time_stamp:
print("完成数据的请求.")
break
time.sleep(3)
except Exception as error:
print(error)
time.sleep(10)
def sample_datas(exchange_name, symbol):
"""
:param exchange_name:
:param symbol:
:return:
"""
path = os.path.join(os.getcwd(), exchange_name, symbol.replace('/', ''))
print(path)
# exit()
file_paths = []
for root, dirs, files in os.walk(path):
if files:
for file in files:
if file.endswith('.csv'):
file_paths.append(os.path.join(path, file))
file_paths = sorted(file_paths)
all_df = pd.DataFrame()
for file in file_paths:
df = pd.read_csv(file)
all_df = all_df.append(df, ignore_index=True)
all_df = all_df.sort_values(by='open_time', ascending=True)
print(all_df)
return all_df
def clear_datas(exchange_name, symbol):
df = sample_datas(exchange_name, symbol)
df['open_time'] = df['open_time'].apply(lambda x: (x//60)*60)
print(df)
df['Datetime'] = pd.to_datetime(df['open_time'], unit='ms') + pd.Timedelta(hours=8)
df.drop_duplicates(subset=['open_time'], inplace=True)
df.set_index('Datetime', inplace=True)
print("*" * 20)
print(df)
symbol_path = symbol.replace('/', '')
df.to_csv(f'exchange_name_symbol_path_1min_data.csv')
if __name__ == '__main__':
exchange_name = 'mexc'
# 初始化交易所对象
exchange_class = getattr(ccxt, exchange_name) # 获取交易所的名称 ccxt.binance
exchange = exchange_class() # 交易所的类. 类似 ccxt.bitfinex()
# 输出交易所所有symbol
# if exchange.has['fetchOHLCV']:
# for symbol in exchange.load_markets():
symbol = 'BTC/USDT'
crawl_exchanges_datas(exchange_name, symbol, '2022-8-1', '2022-10-25')
# 合并文件
# sample_datas(exchange_name, symbol)
以上是关于金融量化利用ccxt爬取交易所的交易历史烛线图数据信息的主要内容,如果未能解决你的问题,请参考以下文章
自己做量化交易软件(43)小白量化实战16--利用小白量化金融模块在恒生PTrade交易系统(交易端)上仿大智慧指标回测及实战交易设计
自己做量化交易软件(43)小白量化实战16--利用小白量化金融模块在恒生PTrade交易系统(交易端)上仿大智慧指标回测及实战交易设计
自己做量化交易软件(43)小白量化实战16--利用小白量化金融模块在恒生PTrade交易系统(交易端)上仿大智慧指标回测及实战交易设计
自己做量化交易软件(44)小白量化实战17--利用小白量化金融模块在迅投QMT极速策略交易系统上仿大智慧指标回测及实战交易设计