Linux内核中KCSAN 数据竞争检测
Posted 为了维护世界和平_
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Linux内核中KCSAN 数据竞争检测相关的知识,希望对你有一定的参考价值。
目录
一、KCSAN:The Kernel Concurrency Sanitizer
在多核处理器,多进程/线程编程。在访问数据时,容易出现竞争。在编程中可以使用锁或者lock-free来保护共享数据。KCSAN 实时动态检测数据竞争现象。
一、KCSAN:The Kernel Concurrency Sanitizer
1、功能:
KCSAN可以找到数据竞争所在
2、工作原理:
检查未标记读取是否与这些写入竞争持续扫描内核的主要分支,在访问的内存位置上设置观察点,挑出导致数据争用的模式,并将其报告给内核日志。是数据统计方法。
3、触发条件:
如果两个线程(或中断上下文)访问同一内存位置,那么两个读/写观察点都会被触发,就会有竞争!KCSAN进行检查时,如果满足了数据竞争的条件,内核会提示错误。
二、内核配置以及说明
版本说明
x86_64: >=5.8
ARM64: >=5.17
编译器版本
GCC or Clang version >= 11
1、配置选项
CONFIG_KCSAN = y
CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n
CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n
CONFIG_KCSAN_INTERRUPT_WATCHER=y
CONFIG_DEBUG_KERNEL=y
2、内核提供的测试用例
源码位置:kernel/kcsan/kcsan-test.c
编译文件:kcsan-test.ko
3、检测输出
选择其中两类输出
[ 426.071584] ==================================================================
[ 426.071584] BUG: KCSAN: data-race in test_kernel_read [kcsan_test] / test_kernel_write [kcsan_test]
[ 426.071584]
[ 426.071584] read to 0xffffffffc0203c60 of 8 bytes by task 307 on cpu 2:
[ 426.071584] test_kernel_read+0x19/0x30 [kcsan_test]
[ 426.101893] access_thread+0x43/0xb0 [kcsan_test]
[ 426.101893] kthread+0x183/0x1b0
[ 426.101893] ret_from_fork+0x22/0x30
[ 426.101893]
[ 426.101893] write to 0xffffffffc0203c60 of 8 bytes by task 306 on cpu 1:
[ 426.101893] test_kernel_write+0x22/0x40 [kcsan_test]
[ 426.101893] access_thread+0x43/0xb0 [kcsan_test]
[ 426.101893] kthread+0x183/0x1b0
[ 426.101893] ret_from_fork+0x22/0x30
[ 426.101893]
[ 426.101893] Reported by Kernel Concurrency Sanitizer on:
[ 426.101893] CPU: 1 PID: 306 Comm: access_thread Kdump: loaded Tainted: G N 6.0.0-rc6 #5
[ 426.101893] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), Bios 1.14.0-2 04/01/2014
[ 426.101893] ==================================================================
[ 427.253735] ==================================================================
[ 427.253735] BUG: KCSAN: data-race in test_kernel_read+0x19/0x30 [kcsan_test]
[ 427.253735]
[ 427.253735] race at unknown origin, with read to 0xffffffffc0203c60 of 8 bytes by task 307 on cpu 2:
[ 427.274398] test_kernel_read+0x19/0x30 [kcsan_test]
[ 427.274398] access_thread+0x43/0xb0 [kcsan_test]
[ 427.274398] kthread+0x183/0x1b0
[ 427.274398] ret_from_fork+0x22/0x30
[ 427.274398]
[ 427.274398] value changed: 0x000000000017b4a9 -> 0x000000000017b520
[ 427.274398]
[ 427.274398] Reported by Kernel Concurrency Sanitizer on:
[ 427.274398] CPU: 2 PID: 307 Comm: access_thread Kdump: loaded Tainted: G N 6.0.0-rc6 #5
[ 427.274398] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
[ 427.274398] ==================================================================
[ 427.732807] test_basic-torture: Stopping reader_thread task
4、检测解析
BUG: KCSAN: data-race
- read/write [(marked)] to <kernel-virt-addr> of <n> bytes by task <PID> on cpu <CPU#>
所涉及的是读 写操作
- “value changed” 如 value changed: 0x000000000017b4a9 -> 0x000000000017b520
BUG: KCSAN: data-race in test_kernel_read+0x19/0x30
三、锁的注意事项
1、通过debugfs查看
/sys/kernel/debug/kcsan 查看kcsan的参数# cat /sys/kernel/debug/kcsan
enabled: 1
used_watchpoints: 0
setup_watchpoints: 177185
data_races: 12
assert_failures: 0
no_capacity: 0
report_races: 5
races_unknown_origin: 0
unencodable_accesses: 0
encoding_false_positives: 0
blacklisted functions: none
2、加锁注意事项
- 容易导致锁缺陷的情况
尝试两次加锁
尝试释放没有上锁的锁
退出而不释放所
- 在自旋锁中申请内存,应该使用GFP_ATOMIC标志,而不是GFP_KERNEL
- 加锁的原则:仅在绝对必要时禁用中断,然后尽可能短的时间
3、Local Locks
新的同步原语,在5.8内核中添加
本地锁是抢占和中断启用/禁用原语的包装器。特别是对于调试内核来说,使用lockdep和静态分析是发现bug的关键。
在非实时系统上,获取本地锁只会映射到禁用抢占(以及可能的中断)。在实时系统上,本地锁实际上是休眠的自旋锁;它们不会禁用抢占或中断。这足以对受保护资源的访问,而不会增加整个系统的延迟。
本地锁定操作按以下方式映射到抢占和中断禁用
local_lock(&llock) preempt_disable()
local_unlock(&llock) preempt_enable()
local_lock_irq(&llock) local_irq_disable()
local_unlock_irq(&llock) local_irq_enable()
local_lock_save(&llock) local_irq_save()
local_unlock_restore(&llock) local_irq_restore()
参考 Concurrency bugs should fear the big bad data-race detector (part 1) [LWN.net]
四、锁的错误使用
1、不正确的自旋锁用法
内核源码驱动位置: drivers/tty/tty_jobctrl.c:tiocspgrp()
使用了错误的锁
kernel version 5.16 才修复
2、阻塞和无法获取引用
1)、在临界资源中不要睡眠
rcu_read_lock(); // begin RCU read critical section
[...]
msleep(10); /* bug! *sleep() helpers all block; if
you must, use the *delay() helpers instead (they're
non-blocking) */
rcu_read_unlock(); // end RCU read critical section
2)、使用内核全局数据结构时,使用后要释放。因其内部有申请与释放的操作
get_task_struct();
/* ... use it ... */
put_task_struct();
get_file(file);
/* ... use the file ... */
fput(file);
原文 My First Kernel Module: A Debugging Nightmare
3、长时间的延迟(数据处理)
spin_lock_irq[save](&mylock[, flags]); /* disables interrupts
*/
// time t1
/* ... do the work ... */
// time t2
spin_unlock_irq[restore](&mylock[, flags]); /* enables
interrupts */
在处理数据消耗的时间 自旋锁 t2-t1
t2-t1 非常小(几微秒或者一位数的毫秒),一般情况下运行正常;
t2-t1 比较大 (几十毫秒或者更长),这种情况不正常,会引起各种延迟问题,甚至是livelock
3.1 阿里的一个锁的问题
原文 Network Jitter: An In-Depth Case Study - Alibaba Cloud Community
网络抖动是由于系统中的延迟很长而导致的。工程师发现,slab统计信息查找调用spin_lock_irq()的代码时引入的延迟。正如我们所知,它在内部禁用了硬件中断,因为这段代码在循环中运行了很长一段时间。O(n)时间复杂性
这是一个非常典型的问题:迭代大于预期的列表,导致意外延迟。
因为spin_lock_irq[save]()API同时禁用硬件irq和内核抢占,所以我们必须尽快重新启用它们 spin_unlock_ir q[restore]()。保持自旋锁所花费的时间超过几十毫秒就被认为太长了。
锁时间的测量方法
1、eBPF
criticalstat:在内核中查找原子临界区的时间
# ./criticalstat -h
usage: criticalstat [-h] [-p] [-i] [-d DURATION]
Trace long critical sections
optional arguments:
-h, --help Show this help message and exit
-p, --preemptoff Find long sections where preemption was off
-i, --irqoff Find long sections where IRQ was off
-d DURATION, --duration DURATION
Duration in uS (microseconds) below which we filter
examples:
./criticalstat # run with default options: irq off for more than 100 uS
./criticalstat -p # find sections with preemption disabled for more than 100 uS
./criticalstat -d 500 # find sections with IRQs disabled for more than 500 uS
./criticalstat -p -d 500 # find sections with preemption disabled for more than 500 uS
补充:大量的实际数据竞争的例子
kernel-sanitizers/FOUND_BUGS.md at master · google/kernel-sanitizers · GitHub
参考
https://course.0voice.com/v1/course/intro?courseId=2&agentId=0
The Kernel Concurrency Sanitizer (KCSAN) — The Linux Kernel documentation Concurrency bugs should fear the big bad data-race detector (part 2) [LWN.net] Concurrency bugs should fear the big bad data-race detector (part 1) [LWN.net]
以上是关于Linux内核中KCSAN 数据竞争检测的主要内容,如果未能解决你的问题,请参考以下文章
Linux(内核剖析):28---内核同步之(临界区竞争条件同步锁常见的内核并发SMNP和UP配置选项锁的争用和扩展性(锁粒度))