[OC学习笔记]weak的实现原理
Posted Billy Miracle
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[OC学习笔记]weak的实现原理相关的知识,希望对你有一定的参考价值。
我们在使用weak时,编译器为我们做了什么呢?
NSObject *object = [NSObject alloc];
id __weak objc = object;
可以看到,首先调用了objc_initWeak
函数。
objc_initWeak
id
objc_initWeak(id *location, id newObj)
if (!newObj)
*location = nil;
return nil;
return storeWeak<DontHaveOld, DoHaveNew, DoCrashIfDeallocating>
(location, (objc_object*)newObj);
方法有两个参数location
和newObj
:
location
:__weak
指针的地址,存储指针的地址,这样便可以在最后将其指向的对象置为nil
newObj
:所引用的对象。即例子中的obj
对于非空的对象,会继续调用storeWeak
函数。
storeWeak
// Template parameters.
enum HaveOld DontHaveOld = false, DoHaveOld = true ;
enum HaveNew DontHaveNew = false, DoHaveNew = true ;
// Update a weak variable.
// If HaveOld is true, the variable has an existing value
// that needs to be cleaned up. This value might be nil.
// If HaveNew is true, there is a new value that needs to be
// assigned into the variable. This value might be nil.
// If CrashIfDeallocating is true, the process is halted if newObj is
// deallocating or newObj's class does not support weak references.
// If CrashIfDeallocating is false, nil is stored instead.
// 更新弱变量。
// 如果 HaveOld 为 true,则该变量具有需要清理的现有值。此值可能为零。
// 如果 HaveNew 为 true,则需要将新值分配到变量中。此值可能为零。
// 如果 CrashIfDeallocating 为 true,则在 newObj 正在解除分配或 newObj 的类不支持弱引用时,该过程将停止。
// 如果 CrashIfDeallocation 为 false,则改为存储 nil。
enum CrashIfDeallocating
DontCrashIfDeallocating = false, DoCrashIfDeallocating = true
;
template <HaveOld haveOld, HaveNew haveNew,
enum CrashIfDeallocating crashIfDeallocating>
static id
storeWeak(id *location, objc_object *newObj)
ASSERT(haveOld || haveNew);
if (!haveNew) ASSERT(newObj == nil);
Class previouslyInitializedClass = nil;
id oldObj;
SideTable *oldTable;
SideTable *newTable;
// Acquire locks for old and new values.
// Order by lock address to prevent lock ordering problems.
// Retry if the old value changes underneath us.
retry:
if (haveOld) // 如果weak ptr之前弱引用过一个obj,则将这个obj所对应的SideTable取出,赋值给oldTable
oldObj = *location;
oldTable = &SideTables()[oldObj];
else // 如果weak ptr之前没有弱引用过一个obj,则oldTable = nil
oldTable = nil;
if (haveNew) // 如果weak ptr要weak引用一个新的obj,则将该obj对应的SideTable取出,赋值给newTable
newTable = &SideTables()[newObj];
else // 如果weak ptr不需要引用一个新obj,则newTable = nil
newTable = nil;
// 加锁操作,防止多线程中竞争冲突
SideTable::lockTwo<haveOld, haveNew>(oldTable, newTable);
// location 应该与 oldObj 保持一致,如果不同,说明当前的 location 已经处理过 oldObj 可是又被其他线程所修改,重试
if (haveOld && *location != oldObj)
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
goto retry;
// Prevent a deadlock between the weak reference machinery
// and the +initialize machinery by ensuring that no
// weakly-referenced object has an un-+initialized isa.
// 通过确保没有弱引用对象具有未+initialize的 isa,防止弱引用机制和 +initialize 机制之间的死锁。
if (haveNew && newObj)
Class cls = newObj->getIsa();
if (cls != previouslyInitializedClass &&
!((objc_class *)cls)->isInitialized())
// 如果cls还没有初始化,先初始化,再尝试设置weak
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
class_initialize(cls, (id)newObj);
// If this class is finished with +initialize then we're good.
// If this class is still running +initialize on this thread
// (i.e. +initialize called storeWeak on an instance of itself)
// then we may proceed but it will appear initializing and
// not yet initialized to the check above.
// Instead set previouslyInitializedClass to recognize it on retry.
// 如果这个类以+initialize完成,那么就没事。
// 如果这个类仍然在这个线程上运行+initialize(即+initialize在自身的实例上调用storeWeak),
// 那么我们可以继续,但它将显示为初始化并且尚未初始化为上面的检查。
// 相反,将先前初始化类设置为在重试时识别它。
previouslyInitializedClass = cls;// 这里记录一下previouslyInitializedClass, 防止改if分支再次进入
goto retry;// 重新获取一遍newObj,这时的newObj应该已经初始化过了
// Clean up old value, if any.
// 清理旧值(如果有)。
if (haveOld)
// 如果weak_ptr之前弱引用过别的对象oldObj,
// 则调用weak_unregister_no_lock,
// 在oldObj的weak_entry_t中移除该weak_ptr地址
weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
// Assign new value, if any.
// 分配新值(如果有)。
if (haveNew) // 如果weak_ptr需要弱引用新的对象newObj
// (1) 调用weak_register_no_lock方法,将weak ptr的地址记录到newObj对应的weak_entry_t中
newObj = (objc_object *)
weak_register_no_lock(&newTable->weak_table, (id)newObj, location,
crashIfDeallocating ? CrashIfDeallocating : ReturnNilIfDeallocating);
// weak_register_no_lock returns nil if weak store should be rejected
// (2) 更新newObj的isa的weakly_referenced bit标志位
// Set is-weakly-referenced bit in refcount table.
if (!_objc_isTaggedPointerOrNil(newObj))
newObj->setWeaklyReferenced_nolock();
// (3)*location 赋值,也就是将weak ptr直接指向了newObj。可以看到,这里并没有将newObj的引用计数+1
// Do not set *location anywhere else. That would introduce a race.
*location = (id)newObj;
// 将weak ptr指向object
else
// No new value. The storage is not changed.
// 解锁,其他线程可以访问oldTable, newTable了
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
// This must be called without the locks held, as it can invoke
// arbitrary code. In particular, even if _setWeaklyReferenced
// is not implemented, resolveInstanceMethod: may be, and may
// call back into the weak reference machinery.
// 这必须在不持有锁的情况下调用,因为它可以调用任意代码。
// 特别是,即使_setWeaklyReferenced没有实现,
// resolveInstanceMethod:也可能是,并且可能回调到弱参考机制中。
callSetWeaklyReferenced((id)newObj);
return (id)newObj;// 返回newObj,此时的newObj与刚传入时相比,weakly-referenced bit位置1
storeWeak
方法的实现代码非常长,但是并不难以理解。下面我们来分析下。
storeWeak
方法实际上是接收了5个参数,分别是haveOld
、haveNew
和crashIfDeallocating
,这三个参数都是以模板的方式传入的,是三个bool
类型的参数。 分别表示weak
指针之前是否指向了一个弱引用、weak
指针是否需要指向一个新的引用、若被弱引用的对象正在dealloc
,此时再弱引用该对象是否应该crash
。- 该方法维护了
oldTable
和newTable
分别表示旧的引用弱表和新的弱引用表,它们都是SideTable
的hash
表。 - 如果
weak
指针之前指向了一个弱引用,则会调用weak_unregister_no_lock
方法将旧的weak
指针地址移除。 - 如果
weak
指针需要指向一个新的引用,则会调用weak_register_no_lock
方法将新的weak
指针地址添加到弱引用表中。 - 调用
setWeaklyReferenced_nolock
方法修改weak
新引用的对象的bit
标志位。
这个方法中的重点也就是weak_unregister_no_lock
和weak_register_no_lock
这两个方法。而这两个方法都是操作的SideTable
这样一个结构的变量,那么继续探究前需要了解下SideTable
。
SideTable
struct SideTable
spinlock_t slock;
RefcountMap refcnts;
weak_table_t weak_table;
SideTable()
memset(&weak_table, 0, sizeof(weak_table));
~SideTable()
_objc_fatal("Do not delete SideTable.");
void lock() slock.lock();
void unlock() slock.unlock();
void forceReset() slock.forceReset();
// Address-ordered lock discipline for a pair of side tables.
template<HaveOld, HaveNew>
static void lockTwo(SideTable *lock1, SideTable *lock2);
template<HaveOld, HaveNew>
static void unlockTwo(SideTable *lock1, SideTable *lock2);
;
SideTable
有三个成员:
spinlock_t slock
: 自旋锁,用于上锁/解锁SideTable
。RefcountMap refcnts
:用来存储OC对象的引用计数的 hash表(仅在未开启isa优化或在isa优化情况下isa_t
的引用计数溢出时才会用到)。weak_table_t weak_table
: 存储对象弱引用指针的hash表。是OC中weak
功能实现的核心数据结构。
weak_table_t
struct weak_table_t
weak_entry_t *weak_entries;
size_t num_entries;
uintptr_t mask;
uintptr_t max_hash_displacement;
;
weak_entries
: hash数组,用来存储弱引用对象的相关信息weak_entry_t
num_entries
: hash数组中的元素个数mask
:hash数组长度-1,会参与hash计算。(注意,这里是hash数组的长度,而不是元素个数。比如,数组长度可能是64,而元素个数仅存了2个)max_hash_displacement
:可能会发生的hash冲突的最大次数,用于判断是否出现了逻辑错误(hash表中的冲突次数绝不会超过改值)
weak_table_t
是一个典型的hash结构。weak_entries
是一个动态数组,用来存储weak_entry_t
类型的元素,这些元素实际上就是OC对象的弱引用信息。
weak_entry_t
struct weak_entry_t
DisguisedPtr<objc_object> referent;// 被弱引用的对象
union // 引用该对象的对象列表,联合。
// 引用个数小于4,用inline_referrers数组。 用个数大于4,用动态数组weak_referrer_t *referrers
struct
weak_referrer_t *referrers;
uintptr_t out_of_line_ness : 2;
uintptr_t num_refs : PTR_MINUS_2;
uintptr_t mask;
uintptr_t max_hash_displacement;
;
struct
// out_of_line_ness field is low bits of inline_referrers[1]
weak_referrer_t inline_referrers[WEAK_INLINE_COUNT];
;
;
bool out_of_line()
return (out_of_line_ness == REFERRERS_OUT_OF_LINE);
weak_entry_t& operator=(const weak_entry_t& other)
memcpy(this, &other, sizeof(other));
return *this;
weak_entry_t(objc_object *newReferent, objc_object **newReferrer)
: referent(newReferent)// 构造方法,里面初始化了静态数组
inline_referrers[0] = newReferrer;
for (int i = 1; i < WEAK_INLINE_COUNT; i++)
inline_referrers[i] = nil;
;
在weak_entry_t
的结构定义中有联合体,在联合体的内部有定长数组inline_referrers[WEAK_INLINE_COUNT]
和动态数组weak_referrer_t *referrers
两种方式来存储弱引用对象的指针地址。通过out_of_line()
这样一个函数方法来判断采用哪种存储方式。当弱引用该对象的指针数目小于等于WEAK_INLINE_COUNT
时,使用定长数组。当超过WEAK_INLINE_COUNT
时,会将定长数组中的元素转移到动态数组中,并之后都是用动态数组存储。
弱引用表的结构是一个hash结构的表,Key是所指对象的地址,Value是weak
指针的地址(这个地址的值是所指对象的地址)数组。那么接下来看看这个弱引用表是怎么维护这些数据的。
weak_register_no_lock方法添加弱引用
/**
* Registers a new (object, weak pointer) pair. Creates a new weak
* object entry if it does not exist.
*
* @param weak_table The global weak table.
* @param referent The object pointed to by the weak reference.
* @param referrer The weak pointer address.
*/
id
weak_register_no_lock(weak_table_t *weak_table, id referent_id,
id *referrer_id, WeakRegisterDeallocatingOptions deallocatingOptions)
objc_object *referent = (objc_object *)referent_id;
objc_object **referrer = (objc_object **)referrer_id;
// 如果referent为nil 或 referent 采用了TaggedPointer计数方式,直接返回,不做任何操作
if (_objc_isTaggedPointerOrNil(referent)) return referent_id;
// ensure that the referenced object is viable
// 确保被引用的对象可用(没有在析构,同时应该支持weak引用)
if (deallocatingOptions == ReturnNilIfDeallocating ||
deallocatingOptions == CrashIfDeallocating)
bool deallocating;
if (!referent->ISA()->hasCustomRR())
deallocating = referent->rootIsDeallocating();
else
// Use lookUpImpOrForward so we can avoid the assert in
// class_getInstanceMethod, since we intentionally make this
// callout with the lock held.
auto allowsWeakReference = (BOOL(*)(objc_object *, SEL))
lookUpImpOrForwardTryCache((id)referent, @selector(allowsWeakReference),
referent->getIsa());
if ((IMP)allowsWeakReference == _objc_msgForward)
return nil;
deallocating =
! (*allowsWeakReference)(referent, @selector(allowsWeakReference));
// 正在析构的对象,不能够被弱引用
if (deallocating)
if (deallocatingOptions == CrashIfDeallocating)
_objc_fatal("Cannot form weak reference to instance (%p) of "
"class %s. It is possible that this object was "
"over-released, or is in the process of deallocation.",
(void*)referent, object_getClassName((id)referent));
else // ReturnNilIfDeallocating
return nil;
// now remember it and where it is being stored
// 在 weak_table中找到referent对应的weak_entry,并将referrer加入到weak_entry中
weak_entry_t *entry;
if ((entry = weak_entry_for_referent(weak_table, referent)))
// 如果能找到weak_entry,则将referrer插入到weak_entry中
append_referrer(entry, referrer);// 将referrer插入到weak_entry_t的引用数组中
else // 如果找不到,就新建一个
weak_entry_t new_entry(referent, referrer);
weak_grow_maybe(weak_table);
weak_entry_insert(weak_table, &new_entry);
// Do not set *referrer. objc_storeWeak() requires that the
// value not change.
return referent_id;
这个方法需要传入四个参数:
weak_table
:weak_table_t
结构类型的全局的弱引用表。referent_id
:weak
指针。*referrer_id
:weak
指针地址。deallocatingOptions
:若果被弱引用的对象正在析构,此时再弱引用该对象是否应该crash或者置为nil
。
下面简单总结下代码的流程:
- 如果
referent
为nil
或采用了TaggedPointer
计数方式,直接返回,不做任何操作。 - 如果对象不能被
weak
引用,直接返回nil
。 - 如果对象正在析构,则抛出异常或者返回
nil
。 - 如果对象没有在析构且可以被
weak
引用,则调用weak_entry_for_referent
方法根据弱引用对象的地址从弱引用表中找到对应的weak_entry
,如果能够找到则调用append_referrer
方法向其中插入weak
指针地址。否则新建一个weak_entry
,再插入。
weak_entry_for_referent取元素
/**
* Return the weak reference table entry for the given referent.
* If there is no entry for referent, return NULL.
* Performs a lookup.
*
* @param weak_table
* @param referent The object. Must not be nil.
*
* @return The table of weak referrers to this object.
*/
static weak_entry_t *
weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
ASSERT(referent);
weak_entry_t *weak_entries = weak_table->weak_entries;
if (!weak_entries) return nil;
size_t begin = hash_pointer(referent) & weak_table->mask;
// 这里通过 & weak_table->mask的位操作,来确保index不会越界
size_t index = begin;
size_t hash_displacement = 0;
while (weak_table->weak_entries[index].referent != referent)
index = (index+1) & weak_table->mask;
if (index == begin) bad_weak_table(weak_table->weak_entries); // 触发bad weak table crash
hash_displacement++;
if (hash_displacement > weak_table->max_hash_displacement)
// 当hash冲突超过了可能的max hash 冲突时,说明元素没有在hash表中,返回nil
return nil;
return &weak_table->weak_entries[index];
append_referrer添加元素
/**
* Add the given referrer to set of weak pointers in this entry.
* Does not perform duplicate checking (b/c weak pointers are never
* added to a set twice).
*
* @param entry The entry holding the set of weak pointers.
* @param new_referrer The new weak pointer to be added.
*/
static void append_referrer(weak_entry_t *entry, objc_object **new_referrer)
if (! entry->out_of_line())
// 如果weak_entry 尚未使用动态数组,走这里
// Try to insert inline.
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++)
if (entry->inline_referrers[i] == nil)
entry->inline_referrers[i] = new_referrer;
return;
// Couldn't insert inline. Allocate out of line.
// 如果inline_referrers的位置已经存满了,则要转型为referrers,做动态数组。
weak_referrer_t *new_referrers = (weak_referrer_t *)
calloc(WEAK_INLINE_COUNT, sizeof(weak_referrer_t));
// This constructed table is invalid, but grow_refs_and_insert
// will fix it and rehash it.
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++)
new_referrers[i] = entry->inline_referrers[i];
entry->referrers = new_referrers;
entry->num_refs = WEAK_INLINE_COUNT;
entry->out_of_line_ness = REFERRERS_OUT_OF_LINE;
entry->mask = WEAK_INLINE_COUNT-1;
entry->max_hash_displacement = 0;
// 对于动态数组的附加处理:
ASSERT(entry->out_of_line());// 断言: 此时一定使用的动态数组
if (entry->num_refs >= TABLE_SIZE(entry) * 3/4)
// 如果动态数组中元素个数大于或等于数组位置总空间的3/4,则扩展数组空间为当前长度的一倍
return grow_refs_and_insert(entry, new_referrer);// 扩容,并插入
// 如果不需要扩容,直接插入到weak_entry中
// 注意,weak_entry是一个哈希表,key:w_hash_pointer(new_referrer) value: new_referrer
// 这里weak_entry_t 的hash算法和 weak_table_t的hash算法是一样的,同时扩容/减容的算法也是一样的
size_t begin = w_hash_pointer(new_referrer) & (entry->mask);
// '& (entry->mask)' 确保了 begin的位置只能大于或等于 数组的长度
size_t index = begin; // 初始的hash index
size_t hash_displacement = 0; // 用于记录hash冲突的次数,也就是hash再位移的次数
while (entry->referrers[index] != nil)
hash_displacement++;
// index + 1, 移到下一个位置,再试一次能否插入。(这里要考虑到entry->mask取值,一定是:0x111, 0x1111, 0x11111, ... ,因为数组每次都是*2增长,即8, 16, 32,对应动态数组空间长度-1的mask,也就是前面的取值。)
index = (index+1) & entry->mask;
// index == begin 意味着数组绕了一圈都没有找到合适位置,这时候一定是出了什么问题。
if (index == begin) bad_weak_table(entry);
if (hash_displacement > entry->max_hash_displacement)
// 记录最大的hash冲突次数, max_hash_displacement意味着: 我们尝试至多max_hash_displacement次,肯定能够找到object对应的hash位置
entry->max_hash_displacement = hash_displacement;
// 将ref存入hash数组,同时,更新元素个数num_refs
weak_referrer_t &ref = entry->referrers[index];
ref = new_referrer;
entry->num_refs++;
首先确定是使用定长数组还是动态数组,如果是使用定长数组,则直接将weak
指针地址添加到数组即可,如果定长数组已经用尽,则需要将定长数组中的元素转存到动态数组中。
weak_unregister_no_lock移除引用
如果weak
指针之前指向了一个弱引用,则会调用weak_unregister_no_lock
方法将旧的weak
指针地址移除。
/**
* Unregister an already-registered weak reference.
* This is used when referrer's storage is about to go away, but referent
* isn't dead yet. (Otherwise, zeroing referrer later would be a
* bad memory access.)
* Does nothing if referent/referrer is not a currently active weak reference.
* Does not zero referrer.
*
* FIXME currently requires old referent value to be passed in (lame)
* FIXME unregistration以上是关于[OC学习笔记]weak的实现原理的主要内容,如果未能解决你的问题,请参考以下文章