SPARK中 DS V2 push down(下推)的一些说明

Posted 鸿乃江边鸟

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SPARK中 DS V2 push down(下推)的一些说明相关的知识,希望对你有一定的参考价值。

背景

本文基于 SPARK 3.3.0
在之前的文章 SPARK中的FileSourceStrategy,DataSourceStrategy以及DataSourceV2Strategy规则 我们有提到 DS V2 push down的功能,如JDBC 复杂下推,以及Parquet的聚合下推等等。其实这里面有个比较大的背景–就是TableCatalog类。

结论

先说结论,这些聚合下推的大前提是,在spark中已经配置了对应的catalog,如下:

spark.sql.catalog.h2=org.apache.spark.sql.execution.datasources.v2.jdbc.JDBCTableCatalog

分析

在Rule V2ScanRelationPushDown一系列的规则中,第一个规则createScanBuilder:

private def createScanBuilder(plan: LogicalPlan) = plan.transform 
    case r: DataSourceV2Relation =>
      ScanBuilderHolder(r.output, r, r.table.asReadable.newScanBuilder(r.options))
  

只有是DataSourceV2Relation类型,也就是 DS v2,才会转换为 ScanBuilderHolder, 而后续的pushDownFilters,pushDownAggregates规则则是基于ScanBuilderHolder来做转换的(如果有遇到ScanBuilderHolder类型才会进行DS v2特有的规则转换),所以DataSourceV2Relation是从哪里来的是关键
直接说重点:
在RULE ResolveRelations中会进行 UnresolvedRelationDataSourceV2Relation或是UnresolvedCatalogRelation的转换:

object ResolveRelations extends Rule[LogicalPlan] 
  ...
def apply(plan: LogicalPlan)
        : LogicalPlan = plan.resolveOperatorsUpWithPruning(AlwaysProcess.fn, ruleId) 
      case i @ InsertIntoStatement(table, _, _, _, _, _) if i.query.resolved =>
        val relation = table match 
          case u: UnresolvedRelation if !u.isStreaming =>
            lookupRelation(u).getOrElse(u)
          case other => other
        

这里的lookupRelation会根据是否有对应的Catalog的注册来判断是DS V1还是DS V2:

private def lookupRelation(
        u: UnresolvedRelation,
        timeTravelSpec: Option[TimeTravelSpec] = None): Option[LogicalPlan] = 
      lookupTempView(u.multipartIdentifier, u.isStreaming, timeTravelSpec.isDefined).orElse 
        expandIdentifier(u.multipartIdentifier) match 
          case CatalogAndIdentifier(catalog, ident) =>
            val key = catalog.name +: ident.namespace :+ ident.name
            AnalysisContext.get.relationCache.get(key).map(_.transform 
              case multi: MultiInstanceRelation =>
                val newRelation = multi.newInstance()
                newRelation.copyTagsFrom(multi)
                newRelation
            ).orElse 
              val table = CatalogV2Util.loadTable(catalog, ident, timeTravelSpec)
              val loaded = createRelation(catalog, ident, table, u.options, u.isStreaming)
              loaded.foreach(AnalysisContext.get.relationCache.update(key, _))
              loaded
            
          case _ => None
        
      
    
    ...
private def expandIdentifier(nameParts: Seq[String]): Seq[String] = 
    if (!isResolvingView || isReferredTempViewName(nameParts)) return nameParts

    if (nameParts.length == 1) 
      AnalysisContext.get.catalogAndNamespace :+ nameParts.head
     else if (catalogManager.isCatalogRegistered(nameParts.head)) 
      nameParts
     else 
      AnalysisContext.get.catalogAndNamespace.head +: nameParts
    
  
object CatalogAndIdentifier 
    import org.apache.spark.sql.connector.catalog.CatalogV2Implicits.MultipartIdentifierHelper

    private val globalTempDB = SQLConf.get.getConf(StaticSQLConf.GLOBAL_TEMP_DATABASE)

    def unapply(nameParts: Seq[String]): Option[(CatalogPlugin, Identifier)] = 
      assert(nameParts.nonEmpty)
      if (nameParts.length == 1) 
        Some((currentCatalog, Identifier.of(catalogManager.currentNamespace, nameParts.head)))
       else if (nameParts.head.equalsIgnoreCase(globalTempDB)) 
        // Conceptually global temp views are in a special reserved catalog. However, the v2 catalog
        // API does not support view yet, and we have to use v1 commands to deal with global temp
        // views. To simplify the implementation, we put global temp views in a special namespace
        // in the session catalog. The special namespace has higher priority during name resolution.
        // For example, if the name of a custom catalog is the same with `GLOBAL_TEMP_DATABASE`,
        // this custom catalog can't be accessed.
        Some((catalogManager.v2SessionCatalog, nameParts.asIdentifier))
       else 
        try 
          Some((catalogManager.catalog(nameParts.head), nameParts.tail.asIdentifier))
         catch 
          case _: CatalogNotFoundException =>
            Some((currentCatalog, nameParts.asIdentifier))
        
      
    
  

expandIdentifier方法结合CatalogAndIdentifier.unapply方法,判断:

  • 1.如果没有指定catalog,则 默认catalog 为v2SessionCatalog,catalog的名称为"spark_catalog",这也是spark默认的sessionCatalog 名称,跳到步骤3
    如以下SQL: select a from table
  • 2.如果指定了catalog,且catalog已经注册了(如以spark.sql.catalog.h2=org.apache.spark.sql.execution.datasources.v2.jdbc.JDBCTableCatalog),则catalog为指定的(如为JDBCTableCatalog,catalog的名称为"h2",跳到步骤3
    如以下SQL:select a from h2.table
  • 3.调用CatalogV2Util.loadTable方法也就是对应的Catalog的loadTable方法来获取对应的Table:
    1. V2SessionCatalog catalog返回是的V1Table
    2. JDBCTableCatalog catalog 返回的是JDBCTable

这样在下一步的createRelation 方法中就会根据不同的case转换为不同的relation:

private def createRelation(
        catalog: CatalogPlugin,
        ident: Identifier,
        table: Option[Table],
        options: CaseInsensitiveStringMap,
        isStreaming: Boolean): Option[LogicalPlan] = 
      ...
      case v1Table: V1Table if CatalogV2Util.isSessionCatalog(catalog) =>
          if (isStreaming) 
            if (v1Table.v1Table.tableType == CatalogTableType.VIEW) 
              throw QueryCompilationErrors.permanentViewNotSupportedByStreamingReadingAPIError(
                ident.quoted)
            
            SubqueryAlias(
              catalog.name +: ident.asMultipartIdentifier,
              UnresolvedCatalogRelation(v1Table.v1Table, options, isStreaming = true))
           else 
            v1SessionCatalog.getRelation(v1Table.v1Table, options)
          
      ...
      case table =>
        ...
          else 
            SubqueryAlias(
              catalog.name +: ident.asMultipartIdentifier,
              DataSourceV2Relation.create(table, Some(catalog), Some(ident), options))
          
  • 如果是V1Table,则会转换为UnresolvedCatalogRelation,继而在 Rule FindDataSourceTable中转为LogicalRelation,这里就会涉及lookupDataSource,也就是注册的datasource(如:“org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider” 或者 "org.apache.spark.sql.execution.datasources.v2.parquet.ParquetDataSourceV2”(目前没有进行cast匹配))发生作用了(在providingInstance()方法中实现)
  • 如果是其他的,则会转换为DataSourceV2Relation,继而在Rule V2ScanRelationPushDown中做一系列的下推优化

所以说 对于JDBC的catalog来说,想要进行DS V2的优化,就得配置:

spark.sql.catalog.h2=org.apache.spark.sql.execution.datasources.v2.jdbc.JDBCTableCatalog

如果想要对于其他DS v2的优化,如Parquet,就得实现对应的TableCatalog,再进行配置:

spark.sql.catalog.parquet=org.apache.spark.sql.execution.datasources.v2.jdbc.xxxx

关于TableCatalog

目前 jdbc的datasource和TableCatalog 在spark都是已经实现了:

## datasource
org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider
## TableCatalog
org.apache.spark.sql.execution.datasources.v2.jdbc.JDBCTableCatalog

如果想实现其他的datasource以及catalog,可以参考JDBC的实现(目前的JDBC的source实现还是基于 DS V1,最好是基于DS V2实现,如参考:ParquetDataSourceV2)。

SPARK-28396也有这方面的讨论。
更进一步DS V2 Push Down的特性,参考技术前沿|Spark 3.3.0 中 DS V2 Push-down 的重构与新特性

以上是关于SPARK中 DS V2 push down(下推)的一些说明的主要内容,如果未能解决你的问题,请参考以下文章

spark outer join push down filer rule(spark 外连接中的下推规则)

spark outer join push down filter rule(spark 外连接中的下推规则)

SPARK中的FileSourceStrategy,DataSourceStrategy以及DataSourceV2Strategy规则

SPARK中的FileSourceStrategy,DataSourceStrategy以及DataSourceV2Strategy

Spark查询优化之谓词下推

Spark SQL下推Cassandra UDF?