再见 Excel,这个 Python 数据可视化库太炫酷了

Posted AI科技大本营

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了再见 Excel,这个 Python 数据可视化库太炫酷了相关的知识,希望对你有一定的参考价值。


来源丨网络

由下面代码生成 

from chord imprt Chord


matrix = [
    [0, 5, 6, 4, 7, 4],
    [5, 0, 5, 4, 6, 5],
    [6, 5, 0, 4, 5, 5],
    [4, 4, 4, 0, 5, 5],
    [7, 6, 5, 5, 0, 4],
    [4, 5, 5, 5, 4, 0],
]


names = ["Action", "Adventure", "Comedy", "Drama", "Fantasy", "Thriller"]


# 保存
Chord(matrix, names).to_html("chord-diagram.html")

图形表现力强悍!

Altair概述

Altair是一个用于Python的声明式统计可视化库,基于Vega和Vega-Lite。

Altair提供了一个强大而简洁的可视化语法,使你能够快速建立一个广泛的统计可视化。下面是一个使用Altair API的例子,通过一个交互式散点图快速实现数据集的可视化。

Github:

https://altair-viz.github.io/getting_started/overview.html

表现强悍

图形表现力强悍!

import matplotlib.pyplot as plt


# 创建数据
size_of_groups = [12, 11, 3, 30]


# 生成饼图
plt.pie(size_of_groups)


# 在中心添加一个圆, 生成环形图
my_circle = plt.Circle((0, 0), 0.7, color='white')
p = plt.gcf()
p.gca().add_artist(my_circle)


plt.show()

import matplotlib.pyplot as plt
from matplotlib_venn import venn2


# 创建图表
venn2(subsets=(10, 5, 2), set_labels=('Group A', 'Group B'))


# 显示
plt.show()

import circlify
import matplotlib.pyplot as plt


# 创建画布, 包含一个子图
fig, ax = plt.subplots(figsize=(14, 14))


# 标题
ax.set_title('Repartition of the world population')


# 移除坐标轴
ax.axis('off')


# 人口数据
data = ['id': 'World', 'datum': 6964195249, 'children': [
              'id': "North America", 'datum': 450448697,
                  'children': [
                     'id': "United States", 'datum': 308865000,
                     'id': "Mexico", 'datum': 107550697,
                     'id': "Canada", 'datum': 34033000
                   ],
              'id': "South America", 'datum': 278095425,
                  'children': [
                     'id': "Brazil", 'datum': 192612000,
                     'id': "Colombia", 'datum': 45349000,
                     'id': "Argentina", 'datum': 40134425
                   ],
              'id': "Europe", 'datum': 209246682,
                  'children': [
                     'id': "Germany", 'datum': 81757600,
                     'id': "France", 'datum': 65447374,
                     'id': "United Kingdom", 'datum': 62041708
                   ],
              'id': "Africa", 'datum': 311929000,
                  'children': [
                     'id': "Nigeria", 'datum': 154729000,
                     'id': "Ethiopia", 'datum': 79221000,
                     'id': "Egypt", 'datum': 77979000
                   ],
              'id': "Asia", 'datum': 2745929500,
                  'children': [
                     'id': "China", 'datum': 1336335000,
                     'id': "India", 'datum': 1178225000,
                     'id': "Indonesia", 'datum': 231369500
                   ]
    ]]


# 使用circlify()计算, 获取圆的大小, 位置
circles = circlify.circlify(
    data,
    show_enclosure=False,
    target_enclosure=circlify.Circle(x=0, y=0, r=1)
)




lim = max(
    max(
        abs(circle.x) + circle.r,
        abs(circle.y) + circle.r,
    )
    for circle in circles
)
plt.xlim(-lim, lim)
plt.ylim(-lim, lim)


for circle in circles:
    if circle.level != 2:
        continue
    x, y, r = circle
    ax.add_patch(plt.Circle((x, y), r, alpha=0.5, linewidth=2, color="lightblue"))


for circle in circles:
    if circle.level != 3:
        continue
    x, y, r = circle
    label = circle.ex["id"]
    ax.add_patch(plt.Circle((x, y), r, alpha=0.5, linewidth=2, color="#69b3a2"))
    plt.annotate(label, (x, y), ha='center', color="white")


for circle in circles:
    if circle.level != 2:
        continue
    x, y, r = circle
    label = circle.ex["id"]
    plt.annotate(label, (x, y), va='center', ha='center', bbox=dict(facecolor='white', edgecolor='black', boxstyle='round', pad=.5))


plt.show()

import folium
import pandas as pd


# 创建地图对象
m = folium.Map(location=[20,0], tiles="OpenStreetMap", zoom_start=2)


# 坐标点数据
data = pd.DataFrame(
   'lon': [-58, 2, 145, 30.32, -4.03, -73.57, 36.82, -38.5],
   'lat': [-34, 49, -38, 59.93, 5.33, 45.52, -1.29, -12.97],
   'name': ['Buenos Aires', 'Paris', 'melbourne', 'St Petersbourg', 'Abidjan', 'Montreal', 'Nairobi', 'Salvador'],
   'value': [10, 12, 40, 70, 23, 43, 100, 43]
, dtype=str)


# 添加气泡
for i in range(0, len(data)):
    folium.Circle(
      location=[data.iloc[i]['lat'], data.iloc[i]['lon']],
      popup=data.iloc[i]['name'],
      radius=float(data.iloc[i]['value'])*20000,
      color='crimson',
      fill=True,
      fill_color='crimson'
    ).add_to(m)


# 保存
m.save('bubble-map.html')

import altair as alt
from vega_datasets import data


boroughs = alt.topo_feature(data.londonBoroughs.url, 'boroughs')
tubelines = alt.topo_feature(data.londonTubeLines.url, 'line')
centroids = data.londonCentroids.url


background = alt.Chart(boroughs).mark_geoshape(
    stroke='white',
    strokeWidth=2
).encode(
    color=alt.value('#eee'),
).properties(
    width=700,
    height=500
)


labels = alt.Chart(centroids).mark_text().encode(
    longitude='cx:Q',
    latitude='cy:Q',
    text='bLabel:N',
    size=alt.value(8),
    opacity=alt.value(0.6)
).transform_calculate(
    "bLabel", "indexof (datum.name,' ') > 0  ? substring(datum.name,0,indexof(datum.name, ' ')) : datum.name"
)


line_scale = alt.Scale(domain=["Bakerloo", "Central", "Circle", "District", "DLR",
                               "Hammersmith & City", "Jubilee", "Metropolitan", "Northern",
                               "Piccadilly", "Victoria", "Waterloo & City"],
                       range=["rgb(137,78,36)", "rgb(220,36,30)", "rgb(255,206,0)",
                              "rgb(1,114,41)", "rgb(0,175,173)", "rgb(215,153,175)",
                              "rgb(106,114,120)", "rgb(114,17,84)", "rgb(0,0,0)",
                              "rgb(0,24,168)", "rgb(0,160,226)", "rgb(106,187,170)"])


lines = alt.Chart(tubelines).mark_geoshape(
    filled=False,
    strokeWidth=2
).encode(
    alt.Color(
        'id:N',
        legend=alt.Legend(
            title=None,
            orient='bottom-right',
            offset=0
        ),
        scale=line_scale
    )
)


background + labels + lines

import altair as alt
from vega_datasets import data


source = data.disasters.url


alt.Chart(source).mark_circle(
    opacity=0.8,
    stroke='black',
    strokeWidth=1
).encode(
    alt.X('Year:O', axis=alt.Axis(labelAngle=0)),
    alt.Y('Entity:N'),
    alt.Size('Deaths:Q',
        scale=alt.Scale(range=[0, 4000]),
        legend=alt.Legend(title='Annual Global Deaths')
    ),
    alt.Color('Entity:N', legend=None)
).properties(
    width=450,
    height=320
).transform_filter(
    alt.datum.Entity != 'All natural disasters'
)

import altair as alt
import pandas as pd


source = pd.DataFrame([
      'country': 'Great Britain', 'animal': 'cattle',
      'country': 'Great Britain', 'animal': 'cattle',
      'country': 'Great Britain', 'animal': 'cattle',
      'country': 'Great Britain', 'animal': 'pigs',
      'country': 'Great Britain', 'animal': 'pigs',
      'country': 'Great Britain', 'animal': 'sheep',
      'country': 'Great Britain', 'animal': 'sheep',
      'country': 'Great Britain', 'animal': 'sheep',
      'country': 'Great Britain', 'animal': 'sheep',
      'country': 'Great Britain', 'animal': 'sheep',
      'country': 'Great Britain', 'animal': 'sheep',
      'country': 'Great Britain', 'animal': 'sheep',
      'country': 'Great Britain', 'animal': 'sheep',
      'country': 'Great Britain', 'animal': 'sheep',
      'country': 'Great Britain', 'animal': 'sheep',
      'country': 'United States', 'animal': 'cattle',
      'country': 'United States', 'animal': 'cattle',
      'country': 'United States', 'animal': 'cattle',
      'country': 'United States', 'animal': 'cattle',
      'country': 'United States', 'animal': 'cattle',
      'country': 'United States', 'animal': 'cattle',
      'country': 'United States', 'animal': 'cattle',
      'country': 'United States', 'animal': 'cattle',
      'country': 'United States', 'animal': 'cattle',
      'country': 'United States', 'animal': 'pigs',
      'country': 'United States', 'animal': 'pigs',
      'country': 'United States', 'animal': 'pigs',
      'country': 'United States', 'animal': 'pigs',
      'country': 'United States', 'animal': 'pigs',
      'country': 'United States', 'animal': 'pigs',
      'country': 'United States', 'animal': 'sheep',
      'country': 'United States', 'animal': 'sheep',
      'country': 'United States', 'animal': 'sheep',
      'country': 'United States', 'animal': 'sheep',
      'country': 'United States', 'animal': 'sheep',
      'country': 'United States', 'animal': 'sheep',
      'country': 'United States', 'animal': 'sheep'
    ])


domains = ['person', 'cattle', 'pigs', 'sheep']


shape_scale = alt.Scale(
    domain=domains,
    range=[
        'M1.7 -1.7h-0.8c0.3 -0.2 0.6 -0.5 0.6 -0.9c0 -0.6 -0.4 -1 -1 -1c-0.6 0 -1 0.4 -1 1c0 0.4 0.2 0.7 0.6 0.9h-0.8c-0.4 0 -0.7 0.3 -0.7 0.6v1.9c0 0.3 0.3 0.6 0.6 0.6h0.2c0 0 0 0.1 0 0.1v1.9c0 0.3 0.2 0.6 0.3 0.6h1.3c0.2 0 0.3 -0.3 0.3 -0.6v-1.8c0 0 0 -0.1 0 -0.1h0.2c0.3 0 0.6 -0.3 0.6 -0.6v-2c0.2 -0.3 -0.1 -0.6 -0.4 -0.6z',
        'M4 -2c0 0 0.9 -0.7 1.1 -0.8c0.1 -0.1 -0.1 0.5 -0.3 0.7c-0.2 0.2 1.1 1.1 1.1 1.2c0 0.2 -0.2 0.8 -0.4 0.7c-0.1 0 -0.8 -0.3 -1.3 -0.2c-0.5 0.1 -1.3 1.6 -1.5 2c-0.3 0.4 -0.6 0.4 -0.6 0.4c0 0.1 0.3 1.7 0.4 1.8c0.1 0.1 -0.4 0.1 -0.5 0c0 0 -0.6 -1.9 -0.6 -1.9c-0.1 0 -0.3 -0.1 -0.3 -0.1c0 0.1 -0.5 1.4 -0.4 1.6c0.1 0.2 0.1 0.3 0.1 0.3c0 0 -0.4 0 -0.4 0c0 0 -0.2 -0.1 -0.1 -0.3c0 -0.2 0.3 -1.7 0.3 -1.7c0 0 -2.8 -0.9 -2.9 -0.8c-0.2 0.1 -0.4 0.6 -0.4 1c0 0.4 0.5 1.9 0.5 1.9l-0.5 0l-0.6 -2l0 -0.6c0 0 -1 0.8 -1 1c0 0.2 -0.2 1.3 -0.2 1.3c0 0 0.3 0.3 0.2 0.3c0 0 -0.5 0 -0.5 0c0 0 -0.2 -0.2 -0.1 -0.4c0 -0.1 0.2 -1.6 0.2 -1.6c0 0 0.5 -0.4 0.5 -0.5c0 -0.1 0 -2.7 -0.2 -2.7c-0.1 0 -0.4 2 -0.4 2c0 0 0 0.2 -0.2 0.5c-0.1 0.4 -0.2 1.1 -0.2 1.1c0 0 -0.2 -0.1 -0.2 -0.2c0 -0.1 -0.1 -0.7 0 -0.7c0.1 -0.1 0.3 -0.8 0.4 -1.4c0 -0.6 0.2 -1.3 0.4 -1.5c0.1 -0.2 0.6 -0.4 0.6 -0.4z',
        'M1.2 -2c0 0 0.7 0 1.2 0.5c0.5 0.5 0.4 0.6 0.5 0.6c0.1 0 0.7 0 0.8 0.1c0.1 0 0.2 0.2 0.2 0.2c0 0 -0.6 0.2 -0.6 0.3c0 0.1 0.4 0.9 0.6 0.9c0.1 0 0.6 0 0.6 0.1c0 0.1 0 0.7 -0.1 0.7c-0.1 0 -1.2 0.4 -1.5 0.5c-0.3 0.1 -1.1 0.5 -1.1 0.7c-0.1 0.2 0.4 1.2 0.4 1.2l-0.4 0c0 0 -0.4 -0.8 -0.4 -0.9c0 -0.1 -0.1 -0.3 -0.1 -0.3l-0.2 0l-0.5 1.3l-0.4 0c0 0 -0.1 -0.4 0 -0.6c0.1 -0.1 0.3 -0.6 0.3 -0.7c0 0 -0.8 0 -1.5 -0.1c-0.7 -0.1 -1.2 -0.3 -1.2 -0.2c0 0.1 -0.4 0.6 -0.5 0.6c0 0 0.3 0.9 0.3 0.9l-0.4 0c0 0 -0.4 -0.5 -0.4 -0.6c0 -0.1 -0.2 -0.6 -0.2 -0.5c0 0 -0.4 0.4 -0.6 0.4c-0.2 0.1 -0.4 0.1 -0.4 0.1c0 0 -0.1 0.6 -0.1 0.6l-0.5 0l0 -1c0 0 0.5 -0.4 0.5 -0.5c0 -0.1 -0.7 -1.2 -0.6 -1.4c0.1 -0.1 0.1 -1.1 0.1 -1.1c0 0 -0.2 0.1 -0.2 0.1c0 0 0 0.9 0 1c0 0.1 -0.2 0.3 -0.3 0.3c-0.1 0 0 -0.5 0 -0.9c0 -0.4 0 -0.4 0.2 -0.6c0.2 -0.2 0.6 -0.3 0.8 -0.8c0.3 -0.5 1 -0.6 1 -0.6z',
        'M-4.1 -0.5c0.2 0 0.2 0.2 0.5 0.2c0.3 0 0.3 -0.2 0.5 -0.2c0.2 0 0.2 0.2 0.4 0.2c0.2 0 0.2 -0.2 0.5 -0.2c0.2 0 0.2 0.2 0.4 0.2c0.2 0 0.2 -0.2 0.4 -0.2c0.1 0 0.2 0.2 0.4 0.1c0.2 0 0.2 -0.2 0.4 -0.3c0.1 0 0.1 -0.1 0.4 0c0.3 0 0.3 -0.4 0.6 -0.4c0.3 0 0.6 -0.3 0.7 -0.2c0.1 0.1 1.4 1 1.3 1.4c-0.1 0.4 -0.3 0.3 -0.4 0.3c-0.1 0 -0.5 -0.4 -0.7 -0.2c-0.3 0.2 -0.1 0.4 -0.2 0.6c-0.1 0.1 -0.2 0.2 -0.3 0.4c0 0.2 0.1 0.3 0 0.5c-0.1 0.2 -0.3 0.2 -0.3 0.5c0 0.3 -0.2 0.3 -0.3 0.6c-0.1 0.2 0 0.3 -0.1 0.5c-0.1 0.2 -0.1 0.2 -0.2 0.3c-0.1 0.1 0.3 1.1 0.3 1.1l-0.3 0c0 0 -0.3 -0.9 -0.3 -1c0 -0.1 -0.1 -0.2 -0.3 -0.2c-0.2 0 -0.3 0.1 -0.4 0.4c0 0.3 -0.2 0.8 -0.2 0.8l-0.3 0l0.3 -1c0 0 0.1 -0.6 -0.2 -0.5c-0.3 0.1 -0.2 -0.1 -0.4 -0.1c-0.2 -0.1 -0.3 0.1 -0.4 0c-0.2 -0.1 -0.3 0.1 -0.5 0c-0.2 -0.1 -0.1 0 -0.3 0.3c-0.2 0.3 -0.4 0.3 -0.4 0.3l0.2 1.1l-0.3 0l-0.2 -1.1c0 0 -0.4 -0.6 -0.5 -0.4c-0.1 0.3 -0.1 0.4 -0.3 0.4c-0.1 -0.1 -0.2 1.1 -0.2 1.1l-0.3 0l0.2 -1.1c0 0 -0.3 -0.1 -0.3 -0.5c0 -0.3 0.1 -0.5 0.1 -0.7c0.1 -0.2 -0.1 -1 -0.2 -1.1c-0.1 -0.2 -0.2 -0.8 -0.2 -0.8c0 0 -0.1 -0.5 0.4 -0.8z'
    ]
)


color_scale = alt.Scale(
    domain=domains,
    range=['rgb(162,160,152)', 'rgb(194,81,64)', 'rgb(93,93,93)', 'rgb(91,131,149)']
)


alt.Chart(source).mark_point(filled=True, opacity=1, size=100).encode(
    alt.X('x:O', axis=None),
    alt.Y('animal:O', axis=None),
    alt.Row('country:N', header=alt.Header(title='')),
    alt.Shape('animal:N', legend=None, scale=shape_scale),
    alt.Color('animal:N', legend=None, scale=color_scale),
).transform_window(
    x='rank()',
    groupby=['country', 'animal']
).properties(width=550, height=140)

提供丰富的图形代码


 

往期回顾

太卷了!AI 高数考试正确率81%

AI 世界里,挖掘机生产哪家强?

2D变身3D,来看英伟达的AI“新”魔法!

如何用 Python 实现景区安防系统?

分享
点收藏
点点赞
点在看

以上是关于再见 Excel,这个 Python 数据可视化库太炫酷了的主要内容,如果未能解决你的问题,请参考以下文章

再见Excel!这个Python数据可视化库太炫酷了

再见matplotlib,7 个必须尝试的 Python 数据可视化库!

实战再见Excel,我能自由定制表格

再见了Excel和ppt,我找到了更好用的可视化傻瓜软件

再见,数据可视化?

Pandas与openpyxl库的超强结合,再见,Excel!