python3操作MongoDB的crud以及聚合案例,代码可直接运行(python经典编程案例)
Posted cui_yonghua
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python3操作MongoDB的crud以及聚合案例,代码可直接运行(python经典编程案例)相关的知识,希望对你有一定的参考价值。
目录:基础篇(能解决工作中80的问题)
01 MongoDB的概述、应用场景、下载方式、连接方式和发展历史等
02 MongoDB数据类型、重要概念以及shell常用指令
一. 插入数据案例
# -*- encoding: utf-8 -*-
import time
import pymongo
import datetime
# 创建对象
client = pymongo.MongoClient('mongodb://账号:密码@主机:端口号/?authSource=admin')
# 连接DB数据库
db = client['数据库名']
def insert_one():
# 连接集合user,集合类似于关系数据库的数据表; 如果集合不存在,就会新建集合user
user_collection = db.user_demo
# 设置文档格式(文档即我们常说的数据)
user_info =
"_id": 105,
"author": "小绿",
"text": "Python开发",
"tags": ["mongodb", "pymongo"],
"date": datetime.datetime.now()
# 使用insert_one单条添加文档,inserted_id获取写入后的id
# 添加文档时,如果文档尚未包含"_id"键,就会自动添加"_id"。"_id"的值在集合中必须是唯一的
# inserted_id用于获取添加后的id,若不需要,则可以去掉
user_id = user_collection.insert_one(user_info).inserted_id
print("user id is ", user_id)
def insert_many():
#批量添加
user_infos = [
"_id": 101,
"author": "小黄",
"text": "Python开发",
"tags": ["mongodb", "python", "pymongo"],
"date": datetime.datetime.utcnow(),
"_id": 102,
"author": "小黄_A",
"text": "Python开发_A",
"tags": "db":"Mongodb","lan":"Python","modle":"Pymongo",
"date": datetime.datetime.utcnow(),
]
user_collection = db.user_insert_many
# inserted_ids用于获取添加后的id,若不需要,则可以直接去掉
user_id = user_collection.insert_many(user_infos).inserted_ids
print("user id is ", user_id)
def bulk_insert_data():
from pymongo import UpdateOne
data_list = ['user_id': 5, 'name': '张三1', 'age': 27, 'email': 'zhangsan1@email.com',
'user_id': 6, 'name': '李四1', 'age': 26, 'email': 'lisi1@email.com',
'user_id': 7, 'name': '王五1', 'age': 29, 'email': 'wangwu1@email.com',
'user_id': 8, 'name': '赵六1', 'age': 26, 'email': 'zhaoliu1@email.com']
bulk_data_list = []
for data in data_list:
one = UpdateOne("_id": data['user_id'],
"$set": "name": data['name'],
"age": data['age'],
"email": data['email'],
"date": datetime.datetime.now(), upsert=True)
bulk_data_list.append(one)
try:
collection_item = db.bulk_insert_demo
collection_item.bulk_write(bulk_data_list)
except Exception as e:
print(f'e: e')
print(f"time.strftime('%Y-%m-%d %H:%M:%S'), 已存mongo: len(bulk_data_list)条")
if __name__ == '__main__':
# 插入单条数据
insert_one()
# 插入多条数据
# insert_many()
# 批量插入
# bulk_insert_data()
二. 查询数据案例
# -*- encoding: utf-8 -*-
import re
import pymongo
# 创建对象
# client = pymongo.MongoClient()
client = pymongo.MongoClient('mongodb://账号:密码@主机:端口号/?authSource=admin')
# 连接DB数据库
db = client['数据库名']
def find_by_condition():
# 连接集合user,集合类似于关系数据库的数据表, 如果集合不存在,就会新建集合user
user_collection = db.user
# 1. 查询文档: find("_id":101),其中"_id":101为查询条件, 若查询条件为空,则默认查询全部
# find_value = user_collection.find("_id": 103)
# print(list(find_value))
# 2. 如果要实现多条件查询,$and和$or,使用方法如下:
# AND条件查询
# find_value = user_collection.find("$and": ["_id": 104, "author": "小蓝"])
# print(list(find_value))
# OR条件查询
# find_value = user_collection.find("$or": ["author": "小黄_A", "author": "小黄"])
# print(list(find_value))
# 3. 根据范围查找: $gt: 大于, $gte: 大于等于, $lt: 小于, $lte: 小于等于, $ne: 不等于,
# 如查找id>102且id<104(_id=101)的文档
# find_value = user_collection.find("_id": "$gt": 102, "$lt": 104)
# print(list(find_value))
# 查找id在[100,101]的文档
# find_value = user_collection.find("_id": "$in": [100, 101])
# print(list(find_value))
# find_value = user_collection.find("and": ["_id": "$gt": 102, "$lt": 105,
# "_id": "$in": [100, 105]])
# print(list(find_value))
# 4. 模糊查询实际上是加入正则表达式实现的
# # 方法一
# find_value = user_collection.find("author": "$regex": ".*小.*")
# print(list(find_value))
# #方法二
regex = re.compile(".*小.*")
find_value = user_collection.find("author": regex)
print(list(find_value))
# 5. 查询嵌入/嵌套文档
# 查询字段"tags":"db":"Mongodb","lan":"Python","modle":"Pymongo"
# 查询嵌套字段,只需要查询嵌套里的某个值即可
find_value = user_collection.find("tags.db": "Mongodb")
print(list(find_value))
# 6. 查询字段"tags":"db":
# "Mongodb":"NoSql","mysql":"Sql","lan":"Python","modle":"Pymongo"
# find_value = user_collection.find("tags.db.Mongodb": "NoSql")
# print(list(find_value))
def find_many():
user_collection = db.user
# 1. 查询文档数量
# result_data = user_collection.count_documents()
# print(result_data)
# 2. 限定返回结果
# result_data_limit = user_collection.find().limit(2)
# for result in result_data_limit:
# print(result)
# 3. 对查询结果进行排序: 字段值1表示正序, -1表示倒序
# user_collection = db.bulk_insert_demo
# result_data_sort = user_collection.find('age': '$gt': 22).sort([('age', -1)])
# print(list(result_data_sort))
# 4. 对数据进行去重
user_collection = db.bulk_insert_demo
# 对age字段去重
result_data_distinct = user_collection.distinct('age')
print(list(result_data_distinct))
# 对满足特定条件的age字段去重
# result_data_distinct = user_collection.distinct('age', 'age': '$gte': 22)
# print(list(result_data_distinct))
# 5.偏移
# results = collection.find().sort('id', pymongo.ASCENDING).skip(1)
# for result in results:
# print(result)
if __name__ == '__main__':
# 根据条件查询文档
# find_by_condition()
# 查询数据
find_many()
三. 更新数据案例
# -*- encoding: utf-8 -*-
import pymongo
# 创建对象
client = pymongo.MongoClient('mongodb://账号:密码@主机:端口号/?authSource=admin')
# 连接DB数据库
db = client['数据库名']
def update_one():
# update_one(筛选条件,更新内容),筛选条件为空,默认更新第一条文档
# 如果查询有多条数据,就按照排序先后更新第一条数据
# "author": "小蓝", "$set": "author": "小黄", "text": "数据挖掘"
user_collection = db.user
user_collection.update_one("author": "小蓝", "$set": "author": "小黄", "text": "数据挖掘")
def replace_one():
# replace_one(筛选条件,更新内容)用于将整条数据替换
# 如果文档的部分数据没有更新,就去除这部分数据
# topic_data.update_one("_id": ObjectId(mongo_id), "$set": 'tag_field': 0)
user_collection = db.user
user_collection.replace_one("author": "小绿",
"author": "小绿", "text": "Python_django")
def update_many():
# update_many(筛选条件,更新内容)用于批量更新文档, 如果查询有多条数据,就会对全部数据进行更新处理
# topic_data.update_many("tag_field": "$exists": False, "$set": 'tag_field': 0)
user_collection = db.user
user_collection.update_many("author": "小黄",
"$set": "text": "Python_web开发")
if __name__ == '__main__':
# 更新单条文档
# update_one()
# 替换一条数据
replace_one()
# 更新多条数据
# update_many()
四. 删除数据案例
# -*- encoding: utf-8 -*-
import pymongo
# 创建对象
# client = pymongo.MongoClient()
client = pymongo.MongoClient('mongodb://账号:密码@主机:端口号/?authSource=admin')
# 连接DB数据库
db = client['数据库名']
user_collection = db.user
def delete_one():
# 删除单条文档
# delete_one(筛选条件),筛选条件为空,默认删除第一条文档
user_collection.delete_one("_id": 100)
def delete_many():
# delete_many(筛选条件)用于删除多条数据
user_collection.delete_many("author": "小黄")
if __name__ == '__main__':
# 删除单条文档
delete_one()
# 删除多条数据
# delete_many()
五. 聚合查询案例
import pymongo
handler = pymongo.MongoClient().monog_db.example_user
rows = handler.aggregate([
'$lookup':
'from': 'example_post',
'localField': 'id',
'foreignField': 'user_id',
'as': 'weibo_info'
,
'$unwind': '$weibo_info',
'$project':
'name': 1,
'work': 1,
'content': '$weibo_info.content',
'post_time': '$weibo_info.post_time'
])
for row in rows:
print(row)
❤️ 如果觉得有用,感谢一键三连哦 !!!❤️
以上是关于python3操作MongoDB的crud以及聚合案例,代码可直接运行(python经典编程案例)的主要内容,如果未能解决你的问题,请参考以下文章