马尔科夫链-蒙特卡罗马尔科夫链-蒙特卡罗方法对先验分布进行抽样

Posted fpga和matlab

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了马尔科夫链-蒙特卡罗马尔科夫链-蒙特卡罗方法对先验分布进行抽样相关的知识,希望对你有一定的参考价值。

1.软件版本

matlab2015b

2.算法仿真概述

        这里,我们的主要算法是结合马尔科夫链-蒙特卡罗方法对先验分布进行抽样,从而确定后验分布的离散值,通过离散值对参数的统计值进行推断。其具体过程如下所示:

根据所提供的参考文献可知,这里,根据已经得到的先验分布,通过MCMC算法进行抽样,知道完成所有的抽样,通过m次迭代抽样之后,最终确定后验分布。

基本上程序就是按这个步骤进行设计的。

3.部分源码

%Main program
clc;
clear all;      % clear the memroy
close all;
warning off;

Num_set  = [3];

%为了对比的统一性,将随机化数据进行固定;
rng('default');
nsamples = 2e5;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%加入参数n的随机化参数,即n为随机的1,2,3,4数据
%initial n,1,2,3,4,........
Num      = Num_set(1);
Nn2      = func_differentN(Num,nsamples);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rng('default');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%以下几个参数不变,还是使用你的main1种的参数;
D        = 458.8; % Diameter of pipe, mm
t        = 8.1; % Thickness of defect, mm
D_t      = D*t;
sigma_u  = 718.2; % Ultimate tensile stress, Mpa
kk       = 3; % Number of service years
delT     = 1; % Time Interval
do       = 5.39; % Intial defect depth mean- mm, N.D 
doS      = 0.25;% Intial defect depth std  -mm,
Lo       = 39.6; % Intial defect length - mm, N.D 
LoS      = 0.25; % Intial defect length std 4  
drate    = 0.250; %  Corrosion depth rate mm/yr -  N.D
drateS   = 0.04; %  Corrosion depth rate Std
Lrate    = 20; %  Corrosion length rate mm/yr - N.D
LrateS   = 10; %  Corrosion length rate Std
do1      = normrnd(do,doS,nsamples,1); % Initial defect depth
Lo1      = normrnd(Lo,LoS,nsamples,1); % Initial defect length 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


%Calaulate the depth change rate and length change rate with time 
for kk1 =1:(kk -1);
    drate1 = normrnd(0,drateS, nsamples,1, kk1); % Measured defect depth @ time T 
    Lrate1 = normrnd(0,LrateS, nsamples,1, kk1); % Measured defect length @ time T    
    if kk1 == 1
       dt(:,:,kk1) = do1(:,:,kk1) + drate1(:,:,kk1)*(delT) ; 
       dt1(:,:,kk1) = dt(:,:,kk1);
       Lt(:,:,kk1) = Lo1(:,:,kk1) + Lrate1(:,:,kk1)*(delT) ;    
    else 
       dt(:,:,kk1) = dt(:,:,kk1-1)   + drate1(:,:,kk1)*(delT);
       dt1(:,:,kk1) = dt(:,:,kk1) ;
       Lt(:,:,kk1) = Lt(:,:,kk1-1) + Lrate1(:,:,kk1)*(delT); 
    end  
end

K_d        = length(dt(:,:,kk1)); %total number of d
K_l        = length(Lt(:,:,kk1)); %total number of l

for i = 1:K_d
    if Nn2(i) == 1
       dt1(i,:,kk1) = dt1(i,:,kk1); 
    else
       dt1(i,:,kk1) = 5.39 + 0.19*dt1(i,:,kk1) - 0.02*Lt(i,:,kk1) + 0.35*Nn2(i);
    end
end


%to obtaion a average number of do_rate and Lo_rate
do_rate    = sum(dt1(:,:,kk1))/K_d;  
Lo_rate    = sum(Lt(:,:,kk1))/K_l; 

% Q = sqrt(1+0.31*power(Lo_rate/sqrt(D/t),2)); 
% Q--length of correction factor
Q1         =(Lo_rate/sqrt(D_t))^2;
Q          = sqrt(1+0.31*Q1);
% pf_rate=(2*t*sigma_u*(1-do_rate/t))/(D-t)/(1-(do_rate/t)/Q);
% pf -- failure pressure
pf_rate_1  = 2*t*sigma_u*(1-do_rate/t);
pf_rate_2  =(D-t)*(1-do_rate/t/Q);
pf_rate    = pf_rate_1/pf_rate_2;




grid_dist  = pf_rate*0.001/20; % in order to get the obvious result on the plot
x          = grid_dist:grid_dist:pf_rate*0.015;


%fit the contineous inverted gamma density to the data
par        = invgamafit(pf_rate*0.001); % change pf_rate from mPa to kPa, in order to get the obvious result on the plot
a          = par(1);
b          = 1/par(2);

%Examining inverted gamma distributed prior
prior     = exp(a*log(b)-gammaln(a)+(-a-1)*log(x)-b./x);
%Examination of inverted gamma post prior after perfect inspection
A         = a + dt1(K_d)/pf_rate^2;
B         = b +  Lt(K_l)/pf_rate^2;

postprior = exp(A*log(B)-gammaln(A)-(A+1)*log(x)-B./x);
%***********************************************************************************


% % %***********************************************************************************
% %定义likelyhood
% likeliprod = likelihoods(x,t,dt(:,:,kk1),Lt(:,:,kk1),Nn2);



%***********************************************************************************
%这个部分和之前的不一样了,修改后的如下所示:
%***********************************************************************************
%对prior参数进行随机化构造
m = 10;
for ijk = 1:m
    ijk
    %***********************************************************************************
    %***********************************************************************************
    %Calaulate the depth change rate and length change rate with time 
    for kk1 =1:(kk -1);
        drate1 = normrnd(0,drateS, nsamples,1, kk1); % Measured defect depth @ time T 
        Lrate1 = normrnd(0,LrateS, nsamples,1, kk1); % Measured defect length @ time T    
        if kk1 == 1
           dt(:,:,kk1) = do1(:,:,kk1) + drate1(:,:,kk1)*(delT) ; 
           dt1(:,:,kk1) = dt(:,:,kk1);
           Lt(:,:,kk1) = Lo1(:,:,kk1) + Lrate1(:,:,kk1)*(delT) ;    
        else 
           dt(:,:,kk1) = dt(:,:,kk1-1)   + drate1(:,:,kk1)*(delT);
           dt1(:,:,kk1) = dt(:,:,kk1) ;
           Lt(:,:,kk1) = Lt(:,:,kk1-1) + Lrate1(:,:,kk1)*(delT); 
        end  
    end

    K_d        = length(dt(:,:,kk1)); %total number of d
    K_l        = length(Lt(:,:,kk1)); %total number of l

    for i = 1:K_d
        if Nn2(i) == 1
           dt1(i,:,kk1) = dt1(i,:,kk1); 
        else
           dt1(i,:,kk1) = 5.39 + 0.19*dt1(i,:,kk1) - 0.02*Lt(i,:,kk1) + 0.35*Nn2(i);
        end
    end
    %to obtaion a average number of do_rate and Lo_rate
    do_rate    = sum(dt1(:,:,kk1))/K_d;  
    Lo_rate    = sum(Lt(:,:,kk1))/K_l; 

    % Q = sqrt(1+0.31*power(Lo_rate/sqrt(D/t),2)); 
    % Q--length of correction factor
    Q1         =(Lo_rate/sqrt(D_t))^2;
    Q          = sqrt(1+0.31*Q1);
    % pf_rate=(2*t*sigma_u*(1-do_rate/t))/(D-t)/(1-(do_rate/t)/Q);
    % pf -- failure pressure
    pf_rate_1  = 2*t*sigma_u*(1-do_rate/t);
    pf_rate_2  =(D-t)*(1-do_rate/t/Q);
    pf_rate    = pf_rate_1/pf_rate_2;
    grid_dist  = pf_rate*0.001/20; % in order to get the obvious result on the plot
    x          = grid_dist:grid_dist:pf_rate*0.015;
    %fit the contineous inverted gamma density to the data
    par        = invgamafit(pf_rate*0.001); % change pf_rate from mPa to kPa, in order to get the obvious result on the plot
    as(1,ijk)  = par(1);
    bs(1,ijk)  = 1/par(2);
    %***********************************************************************************
    %***********************************************************************************
end


npar     = m;             % dimension of the target
drscale  = m;             % DR shrink factor
adascale = 2.4/sqrt(npar); % scale for adaptation
nsimu    = 5e5;            % number of simulations

c        = 10;           % cond number of the target covariance 
a        = ones(npar,1); % 1. direction
[Sig,Lam]= covcond(c,a); % covariance and its inverse
mu       = as;% center point
model.ssfun      = inline('(x-d.mu)*d.Lam*(x-d.mu)''','x','d');
params.par0      = mu+0.1; % initial value
params.bounds    = (ones(npar,2)*diag([0,Inf]))';
data             = struct('mu',mu,'Lam',Lam);
options.nsimu    = nsimu;
options.adaptint = 100;
options.qcov     = Sig.*2.4^2./npar;
options.drscale  = drscale;
options.adascale = adascale; % default is 2.4/sqrt(npar) ;
options.printint = 100;
[Aresults,Achain]= dramrun(model,data,params,options);

mu       = bs;% center point
model.ssfun      = inline('(x-d.mu)*d.Lam*(x-d.mu)''','x','d');
params.par0      = mu+0.1; % initial value
params.bounds    = (ones(npar,2)*diag([0,Inf]))';
data             = struct('mu',mu,'Lam',Lam);
options.nsimu    = nsimu;
options.adaptint = 100;
options.qcov     = Sig.*2.4^2./npar;
options.drscale  = drscale;
options.adascale = adascale; % default is 2.4/sqrt(npar) ;
options.printint = 100;
[Bresults,Bchain]= dramrun(model,data,params,options);


 
%选择值最集中的最为最终的值; 
for i = 1:m
    [Na,Xa] = hist(Achain(:,i));
    [V,I]   = max(Na);
    A1(i)   = Xa(I);
    [Nb,Xb] = hist(Bchain(:,i));
    [V,I]   = max(Nb);
    B1(i)   = Xb(I);
end

As                 = mean(A1);
Bs                 = mean(B1);
post_imp_prior     = exp(As*log(Bs)-gammaln(As)-(As+1)*log(x)-Bs./x);


 

post_imp_prior_CDF = cumsum(post_imp_prior)*grid_dist;


figure
plot(x,prior, 'g-','linewidth',2);
hold on
plot(x, postprior, 'm-','linewidth',2);
hold on
plot(x, post_imp_prior, 'r-','linewidth',2);
hold on
plot(x, post_imp_prior_CDF, 'c-','linewidth',2);
hold on
grid
legend('prior density', 'posterior perfect inspection','posterior  imp inpection','cummulative posterior imperfect inspection', 0);
xlabel('Pressure rate (kPa/year)');
ylabel('density');
axis([0,pf_rate*0.015,0,1.15*max([max(prior),max(postprior),max(post_imp_prior),max(post_imp_prior_CDF)])]); 

4.仿真结论

5.参考文献

[1]朱新玲. 马尔科夫链蒙特卡罗方法研究综述[J]. 统计与决策, 2009(21):3.A16-51

以上是关于马尔科夫链-蒙特卡罗马尔科夫链-蒙特卡罗方法对先验分布进行抽样的主要内容,如果未能解决你的问题,请参考以下文章

MCMC+马尔科夫链蒙特卡罗

蒙特卡罗方法生成指定状态空间下对应长度的马尔可夫链--MATLAB源程序

蒙特卡罗方法生成指定状态空间下对应长度的马尔可夫链--MATLAB源程序

马尔可夫链蒙特卡罗法

马尔科夫链

R语言中实现马尔可夫链蒙特卡罗MCMC模型