机器学习实战---线性回归提高篇之乐高玩具套件二手价预测
Posted JeemyJohn
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习实战---线性回归提高篇之乐高玩具套件二手价预测相关的知识,希望对你有一定的参考价值。
作者:崔家华
编辑:王抒伟
PS(欢迎访问作者个人网站:www.cuijiahua.com)
线性回归
本篇文章讲解线性回归的缩减方法,岭回归以及逐步线性回归,同时熟悉sklearn的岭回归使用方法,对乐高玩具套件的二手价格做出预测。
岭回归:
如果数据的特征比样本点还多应该怎么办?很显然,此时我们不能再使用上文的方法进行计算了,因为矩阵X不是满秩矩阵,非满秩矩阵在求逆时会出现问题。为了解决这个问题,统计学家引入岭回归(ridge regression)的概念。
1、岭回归是啥子?
岭回归即我们所说的L2正则线性回归,在一般的线性回归最小化均方误差的基础上增加了一个参数w的L2范数的罚项,从而最小化罚项残差平方和:
简单说来,岭回归就是在普通线性回归的基础上引入单位矩阵。回归系数的计算公式变形如下
上式中,矩阵I是一个mxm的单位矩阵,加上一个λI从而使得矩阵非奇异,进而能对矩阵求逆。
岭回归最先用来处理特征数多于样本数的情况,现在也用于在估计中加入偏差,从而得到更好的估计。这里通过引入λ来限制了所有w之和,通过引入该惩罚项,能够减少不重要的参数,这个技术在统计学中也可以叫做缩减(shrinkage)。
缩减方法可以去掉不重要的参数,因此能更好地裂解数据。此外,与简单的线性回归相比,缩减法能够取得更好的预测效果。
为了使用岭回归和缩减技术,首先需要对特征做标准化处理。因为,我们需要使每个维度特征具有相同的重要性。本文使用的标准化处理比较简单,就是将所有特征都减去各自的均值并除以方差。
2、编写代码
代码很简单,只需要稍做修改,其中,λ为模型的参数。我们先绘制一个回归系数与log(λ)的曲线图,看下它们的规律,编写代码如下:
# -*-coding:utf-8 -*-
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
import numpy as np
def loadDataSet(fileName):
"""
函数说明:加载数据
Parameters:
fileName - 文件名
Returns:
xArr - x数据集
yArr - y数据集
Website:
http://www.cuijiahua.com/
Modify:
2017-11-20
"""
numFeat = len(open(fileName).readline().split('\\t')) - 1
xArr = []; yArr = []
fr = open(fileName)
for line in fr.readlines():
lineArr =[]
curLine = line.strip().split('\\t')
for i in range(numFeat):
lineArr.append(float(curLine[i]))
xArr.append(lineArr)
yArr.append(float(curLine[-1]))
return xArr, yArr
def ridgeRegres(xMat, yMat, lam = 0.2):
"""
函数说明:岭回归
Parameters:
xMat - x数据集
yMat - y数据集
lam - 缩减系数
Returns:
ws - 回归系数
Website:
http://www.cuijiahua.com/
Modify:
2017-11-20
"""
xTx = xMat.T * xMat
denom = xTx + np.eye(np.shape(xMat)[1]) * lam
if np.linalg.det(denom) == 0.0:
print("矩阵为奇异矩阵,不能转置")
return
ws = denom.I * (xMat.T * yMat)
return ws
def ridgeTest(xArr, yArr):
"""
函数说明:岭回归测试
Parameters:
xMat - x数据集
yMat - y数据集
Returns:
wMat - 回归系数矩阵
Website:
http://www.cuijiahua.com/
Modify:
2017-11-20
"""
xMat = np.mat(xArr); yMat = np.mat(yArr).T
#数据标准化
yMean = np.mean(yMat, axis = 0) #行与行操作,求均值
yMat = yMat - yMean #数据减去均值
xMeans = np.mean(xMat, axis = 0) #行与行操作,求均值
xVar = np.var(xMat, axis = 0) #行与行操作,求方差
xMat = (xMat - xMeans) / xVar #数据减去均值除以方差实现标准化
numTestPts = 30 #30个不同的lambda测试
wMat = np.zeros((numTestPts, np.shape(xMat)[1])) #初始回归系数矩阵
for i in range(numTestPts): #改变lambda计算回归系数
ws = ridgeRegres(xMat, yMat, np.exp(i - 10)) #lambda以e的指数变化,最初是一个非常小的数,
wMat[i, :] = ws.T #计算回归系数矩阵
return wMat
def plotwMat():
"""
函数说明:绘制岭回归系数矩阵
Website:
http://www.cuijiahua.com/
Modify:
2017-11-20
"""
font = FontProperties(fname=r"c:\\windows\\fonts\\simsun.ttc", size=14)
abX, abY = loadDataSet('abalone.txt')
redgeWeights = ridgeTest(abX, abY)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(redgeWeights)
ax_title_text = ax.set_title(u'log(lambada)与回归系数的关系', FontProperties = font)
ax_xlabel_text = ax.set_xlabel(u'log(lambada)', FontProperties = font)
ax_ylabel_text = ax.set_ylabel(u'回归系数', FontProperties = font)
plt.setp(ax_title_text, size = 20, weight = 'bold', color = 'red')
plt.setp(ax_xlabel_text, size = 10, weight = 'bold', color = 'black')
plt.setp(ax_ylabel_text, size = 10, weight = 'bold', color = 'black')
plt.show()
if __name__ == '__main__':
plotwMat()
来看看运行结果:
上图绘制了回归系数与log(λ)的关系。
在最左边,即λ最小时,可以得到所有系数的原始值(与线性回归一致);
而在右边,系数全部缩减成0;在中间部分的某个位置,将会得到最好的预测结果。
想要得到最佳的λ参数,可以使用交叉验证的方式获得,文章的后面会继续讲解。
前向逐步线性回归:
前向逐步线性回归算法属于一种贪心算法,即每一步都尽可能减少误差。我们计算回归系数,不再是通过公式计算,而是通过每次微调各个回归系数,然后计算预测误差。那个使误差最小的一组回归系数,就是我们需要的最佳回归系数。
前向逐步线性回归实现也很简单。当然,还是先进行数据标准化,编写代码如下:
# -*-coding:utf-8 -*-
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
import numpy as np
def loadDataSet(fileName):
"""
函数说明:加载数据
Parameters:
fileName - 文件名
Returns:
xArr - x数据集
yArr - y数据集
Website:
http://www.cuijiahua.com/
Modify:
2017-11-20
"""
numFeat = len(open(fileName).readline().split('\\t')) - 1
xArr = []; yArr = []
fr = open(fileName)
for line in fr.readlines():
lineArr =[]
curLine = line.strip().split('\\t')
for i in range(numFeat):
lineArr.append(float(curLine[i]))
xArr.append(lineArr)
yArr.append(float(curLine[-1]))
return xArr, yArr
def regularize(xMat, yMat):
"""
函数说明:数据标准化
Parameters:
xMat - x数据集
yMat - y数据集
Returns:
inxMat - 标准化后的x数据集
inyMat - 标准化后的y数据集
Website:
http://www.cuijiahua.com/
Modify:
2017-11-23
"""
inxMat = xMat.copy() #数据拷贝
inyMat = yMat.copy()
yMean = np.mean(yMat, 0) #行与行操作,求均值
inyMat = yMat - yMean #数据减去均值
inMeans = np.mean(inxMat, 0) #行与行操作,求均值
inVar = np.var(inxMat, 0) #行与行操作,求方差
inxMat = (inxMat - inMeans) / inVar #数据减去均值除以方差实现标准化
return inxMat, inyMat
def rssError(yArr,yHatArr):
"""
函数说明:计算平方误差
Parameters:
yArr - 预测值
yHatArr - 真实值
Returns:
Website:
http://www.cuijiahua.com/
Modify:
2017-11-23
"""
return ((yArr-yHatArr)**2).sum()
def stageWise(xArr, yArr, eps = 0.01, numIt = 100):
"""
函数说明:前向逐步线性回归
Parameters:
xArr - x输入数据
yArr - y预测数据
eps - 每次迭代需要调整的步长
numIt - 迭代次数
Returns:
returnMat - numIt次迭代的回归系数矩阵
Website:
http://www.cuijiahua.com/
Modify:
2017-12-03
"""
xMat = np.mat(xArr); yMat = np.mat(yArr).T #数据集
xMat, yMat = regularize(xMat, yMat) #数据标准化
m, n = np.shape(xMat)
returnMat = np.zeros((numIt, n)) #初始化numIt次迭代的回归系数矩阵
ws = np.zeros((n, 1)) #初始化回归系数矩阵
wsTest = ws.copy()
wsMax = ws.copy()
for i in range(numIt): #迭代numIt次
# print(ws.T) #打印当前回归系数矩阵
lowestError = float('inf'); #正无穷
for j in range(n): #遍历每个特征的回归系数
for sign in [-1, 1]:
wsTest = ws.copy()
wsTest[j] += eps * sign #微调回归系数
yTest = xMat * wsTest #计算预测值
rssE = rssError(yMat.A, yTest.A) #计算平方误差
if rssE < lowestError: #如果误差更小,则更新当前的最佳回归系数
lowestError = rssE
wsMax = wsTest
ws = wsMax.copy()
returnMat[i,:] = ws.T #记录numIt次迭代的回归系数矩阵
return returnMat
def plotstageWiseMat():
以上是关于机器学习实战---线性回归提高篇之乐高玩具套件二手价预测的主要内容,如果未能解决你的问题,请参考以下文章