概率质量函数(Probability Mass Function)和期望课程笔记

Posted Xurtle

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了概率质量函数(Probability Mass Function)和期望课程笔记相关的知识,希望对你有一定的参考价值。

随机变量的数学定义

从样本空间到实数值的映射函数。


一个样本空间可以定义多个随机变量

一个或几个随机变量的函数构成一个新的随机变量


概率质量函数的定义

pX(x)=P(X=x)=P(ωΩ s.t.X(ω)=x)

上面公式的含义为在随机变量X的映射函数下,所有样本空间中的结果在此映射下输出结果为x的概率。

属性如下:

  1. pX(x)0
  2. xpX(x)=1

Bernoulli和指示器随机变量

Bernoulli随机变量定义

X=1,0,w.p.(with probability) pw.p.(with probability) 1 - p

参数p的取值为: p[0,1]

PX(0)=1p
PX(1)=p

它适合对结果只有成功或失败、正面或背面、等等来进行建模。

指示器随机变量定义

事件A的指示器随机变量: IA=1(iff)A

因此: PIA(1)=P(IA=1)=P(A)

指示器随机变量是非常有用的,因为它把对事件的操作转换成了对随机变量的操作。有时,对随机变量计算比对事件更加容易。

离散均匀随机变量

例子如下:

二项随机变量

例子如下:

二项随机变量的PMF图像如下:

几何随机变量

例子如下:

随机变量的期望值/平均值

定义: E[X]=xxPX(x)

上面的定义可以解释成大量独立实验的平均值

注意:如果我们有无穷的求和项,那么我们需要将此式定义明确。所以,我们假设 x|x|PX(x)<

Bernoulli和指示器随机变量的期望值

X=1,0,w.p.(with probability) pw.p.(with probability) 1 - p

E[X] = 1 * p + 0 * (1 - p) = p

指示器随机变量的期望值:

E[IA]=P(A)

均匀随机变量的期望值

期望的基本属性

用于计算E[g(X)]的期望值规则

设X为随机变量,令Y = g(X).

E[Y]=E[g(X)]=xg(x)pX(x)

注意:通常情况下, E[g(X)]g(E[X])

期望的线性

E[aX + b] = aE[X] + b.

基于期望值规则的推导:

令g(x) = ax + b.

E[g(x)] = E[ax + b] = x(ax+b)PX(x)=axxPX(x)+bxPX(x)=aE[x]+b

在这个例子中,E[g(x)] = g(E[x])。当g(x)是线性函数时,这个等式成立。当其为非线性函数时,通常情况下是不成立的。

以上是关于概率质量函数(Probability Mass Function)和期望课程笔记的主要内容,如果未能解决你的问题,请参考以下文章

P1-概率论基础(Primer on Probability Theory)

常见的概率分布类型(Probability Distribution)

有没有办法让 R 中的密度()函数使用计数与概率?

UVA11181Probability|Given(条件概率)

UVA11181 Probability|Given概率+DFS

概率论基础知识(Probability Theory)