Stream API 优化代码
Posted l_learning
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Stream API 优化代码相关的知识,希望对你有一定的参考价值。
使用Java8中新特性Lambda表达式和流申明式处理数据集合,让代码更简洁
使用一个简单的员工类来学习使用方法
public class Employee
/**
* 姓名
*/
private String name;
/**
* 年龄
*/
private int age;
/**
* 薪资
*/
private double salary;
/**
* 部门
*/
private String dept;
public Employee(String name, int age, String dept, double salary)
this.name = name;
this.age = age;
this.dept = dept;
this.salary = salary;
//...省略
测试集合(模拟数据查询出来的数据)
List<Employee> stuList = new ArrayList<>();
stuList.add(new Employee("小明", 18, "开发部", 2000.00));
stuList.add(new Employee("小红", 20, "开发部", 2100.00));
stuList.add(new Employee("小强", 25, "测试部", 2200.00));
年龄小于25岁的员工姓名按年龄排序
List<String> result = stuList.stream()
//筛选出年龄小于25岁的员工
.filter(stu -> stu.getAge() < 25)
//根据年龄进行排序
.sorted(comparing(Employee::getAge))
//获取员工姓名
.map(Employee::getName)
//转换为List
.collect(Collectors.toList());
按员工部门进行分类
Map<String, List<Employee>> deptEmployee = stuList.stream()
.collect(groupingBy(Employee::getDept));
filter的方法参数为一个条件,filter筛选年龄大于25岁的员工
List<Employee> employeeFilter = stuList.stream()
.filter(i -> i.getAge() > 25)
.collect(toList());
distinct去除重复元素(不能根据对象属性内容去重)
List<Employee> employeeDistinct = stuList.stream()
.distinct()
.collect(toList());
limit返回指定流个数,limit的参数值必须>=0
List<Employee> employeeLimit = stuList.stream()
.limit(3)
.collect(toList());
skip跳过流中的元素,skip的参数值必须>=0,从第三个元素开始取值
List<Employee> employeeSkip = stuList.stream()
.skip(2)
.collect(toList());
map方法类似一个迭代器,获取集合中的部门
List<String> dept = stuList.stream()
.map(i->i.getDept())
.collect(Collectors.toList());
flatMap流转换, 获取员工列表中部门,有多个部门的按逗号分割并去重
List<String> deptDistinct = stuList.stream()
.map(w -> w.getDept().split(","))
.flatMap(Arrays::stream)
.distinct()
.collect(Collectors.toList());
获取员工年龄中最小值
Optional<Integer> min = stuList.stream()
.map(Employee::getAge)
.min(Integer::compareTo);
获取员工年龄中最小值
OptionalInt min2 = stuList.stream()
.mapToInt(Employee::getAge)
.min();
获取员工年龄中最大值
Optional<Integer> max = stuList.stream()
.map(Employee::getAge)
.max(Integer::compareTo);
获取员工年龄中最大值
OptionalInt max2 = stuList.stream()
.mapToInt(Employee::getAge)
.max();
minBy获取员工年龄最小值
Optional<Integer> minBy = stuList.stream()
.map(Employee::getAge)
.collect(minBy(Integer::compareTo));
maxBy获取员工年龄最大值
Optional<Integer> maxBy = stuList.stream()
.map(Employee::getAge)
.collect(maxBy(Integer::compareTo));
reduce获取获取员工年龄最大值
Optional<Integer> reduceMin = stuList.stream()
.map(Employee::getAge)
.reduce(Integer::min);
reduce获取获取员工年龄最大值
Optional<Integer> reduceMax = stuList.stream()
.map(Employee::getAge)
.reduce(Integer::max);
求和, 员工的薪资之和
double sum = stuList.stream()
.collect(summingDouble(Employee::getSalary));
double sum2 = stuList.stream()
.map(Employee::getSalary)
.reduce(0.00, Double::sum);
double sum3 = stuList.stream()
.mapToDouble(Employee::getSalary)
.sum();
averagingInt求员工年龄平均值
double average = stuList.stream()
.collect(averagingInt(Employee::getAge));
summarizingInt同时求员工薪资总和、平均值、最大值、最小值
DoubleSummaryStatistics doubleSummaryStatistics = stuList.stream()
.collect(summarizingDouble(Employee::getSalary));
//获取平均值
double summarizingDoubleAverage = doubleSummaryStatistics.getAverage();
//获取最小值
double summarizingDoubleMin = doubleSummaryStatistics.getMin();
//获取最大值
double summarizingDoubleMax = doubleSummaryStatistics.getMax();
//获取总和
double summarizingDoubleSum = doubleSummaryStatistics.getSum();
返回员工姓名List集合
List<String> nameList = stuList.stream()
.map(Employee::getName)
.collect(toList());
返回员工姓名Set集合
Set<String> nameSet = stuList.stream()
.map(Employee::getName)
.collect(toSet());
通过joining用逗号拼接员工姓名
String joinName = stuList.stream()
.map(Employee::getName)
.collect(joining(", "));
通过groupingBy进行员工部门分组
Map<String, List<Employee>> deptGroup = stuList.stream()
.collect(groupingBy(Employee::getDept));
allMatch匹配所有,员工年龄都大于60
boolean allMatch = stuList.stream()
.allMatch(i -> i.getAge() > 60);
anyMatch匹配其中一个,存在员工年龄大于60的员工
boolean anyMatch = stuList.stream()
.anyMatch(i -> i.getAge() > 60);
noneMatch全部不匹配,员工年龄都小于60
boolean noneMatch = stuList.stream()
.noneMatch(i -> i.getAge() > 60);
通过count统计员工个数
Long count = stuList.stream()
.count();
通过counting统计员工个数
Long counting = stuList.stream()
.collect(counting());
findFirst查找年龄大于60岁的第一个员工
Optional<Employee> findFirst = stuList.stream()
.filter(i -> i.getAge() > 60)
.findFirst();
findAny随机查找一个年龄大于60岁的第一个员工
Optional<Employee> resultFindAny = stuList.stream()
.filter(i -> i.getAge() > 60)
.findAny();
partitioningBy进行分区, 对年龄大于60的与小于等于60的分区
Map<Boolean, List<Employee>> partitioningBy = stuList.stream()
.collect(partitioningBy(i -> i.getAge() > 60));
对一个集合中的值进行求和
List<Integer> integerList = Arrays.asList(1, 2, 3, 4, 5);
//对一个集合中的值进行求和
int integerListSum = integerList.stream()
.reduce(0, (a, b) -> (a + b));
//对一个集合中的值进行求和
int integerListSum2 = integerList.stream()
.reduce(0, Integer::sum);
foreach进行元素遍历
stuList.stream().forEach(System.out::println);
以上是关于Stream API 优化代码的主要内容,如果未能解决你的问题,请参考以下文章