python将矩阵存为lmdb文件
Posted 白水baishui
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python将矩阵存为lmdb文件相关的知识,希望对你有一定的参考价值。
由于工作需要,将C++生成的矩阵存入LMDB再用caffe进行处理,输出的矩阵失去了它原本的shape,因此只能记录下来:
矩阵X(n*ell):
-372302407
1319544887
-223830618
-184109131
-328009648
-182855917
…
749988319
-1387505086
-1967883425
1022949309
1680638116
1541327498
矩阵Y(r*n):
1
0
0
0
11
-34
-280
109
151
-205
-105
…
156
-152
-151
27
199
-202
-125
-95
# 向lmdb数据库存入两个矩阵X和y,大小分别为n*ell、r*n
import numpy as np
import lmdb
# X:r*n
# Y:n*ell
r = 4
n = 32
ell = 30
X_path = './X.txt'
Y_path = './Y.txt'
def write_lmdb(filename):
print('Write lmdb')
lmdb_env = lmdb.open(filename, map_size=int(1e9))
n_samples= 1
# 读入X
with open(X_path, 'r') as f:
# 读取图像文件的二进制格式数据
X_temp = f.read()
X_temp = X_temp.split('\\n')
del (X_temp[-1])
X = [int(i) for i in X_temp]
X = np.array(X).astype(np.int64)
# print(X)
# 读入Y
with open(Y_path, 'r') as f:
# 读取图像文件的二进制格式数据
Y_temp = f.read()
Y_temp = Y_temp.split('\\n')
del (Y_temp[-1])
y = [int(i) for i in Y_temp]
y = np.array(y).astype(np.int64)
# print(y)
# 写入LMDB
for i in range(n_samples):
with lmdb_env.begin(write=True) as lmdb_txn:
lmdb_txn.put(str('X_'+str(i)).encode(), X)
lmdb_txn.put(str('y_'+str(i)).encode(), y)
print('X:',X)
print('y:',y)
def read_lmdb(filename):
print('Read lmdb')
lmdb_env = lmdb.open(filename)
lmdb_txn = lmdb_env.begin()
lmdb_cursor = lmdb_txn.cursor()
n_samples=1
read_array = []
with lmdb_env.begin() as lmdb_txn:
with lmdb_txn.cursor() as lmdb_cursor:
for key, value in lmdb_cursor:
if('X'.encode() in key):
read_temp = np.frombuffer(value, dtype=np.int64)
read_array.append(read_temp)
if('y'.encode() in key):
read_temp = np.frombuffer(value, dtype=np.int64)
read_array.append(read_temp)
n_samples = n_samples + 1
x_read_temp = read_array[0]
x_read = []
x_read_line = []
print("X: ")
for i in range(x_read_temp.size):
x_read_line.append(x_read_temp[i])
if len(x_read_line) == (n+r)*ell: # 列数
x_read.append(x_read_line.copy())
x_read_line.clear()
print(x_read)
y_read_temp = read_array[1]
y_read = []
y_read_line = []
print("Y: ")
for i in range(y_read_temp.size):
y_read_line.append(y_read_temp[i])
if len(y_read_line) == n+r: # 列数
y_read.append(y_read_line.copy())
y_read_line.clear()
print(y_read)
print('n_samples',n_samples)
write_lmdb('temp.db')
read_lmdb('temp.db')
输出如下:
Write lmdb
X: [-372302407 1319544887 -223830618 ... 1998175905 -616375716 -132621858]
y: [ 1 0 0 0 11 -34 -280 109 151 -205 -105 3 156 -152
-151 27 199 -202 -125 -95 318 -88 -173 273 262 -127 -152 -322
-18 198 110 65 14 -310 192 103 0 1 0 0 -215 -217
0 -65 -123 -110 171 39 -78 -21 24 -61 23 -44 113 184
169 -240 -157 -16 136 182 -331 156 26 112 -188 -175 244 -195
30 -228 0 0 1 0 -55 -15 -62 -41 -24 -140 -94 198
-130 -4 -33 -206 256 -230 -406 -170 84 -45 -283 -136 38 -39
64 -84 85 -85 41 -241 -42 -107 -19 -135 0 0 0 1
124 5 -235 -121 49 -115 242 -61 -353 106 353 -210 -194 219
-228 183 -80 110 218 -243 10 -190 -338 -75 11 -177 31 -208
176 -66 97 -134]
Read lmdb(由于数据太长,省略了后面的)
X:
[[-372302407, 1319544887, -223830618, -184109131, ...], ...]
Y:
[[1, 0, 0, 0, 11, -34, -280, 109, 151, -205, ...], ...]
以上是关于python将矩阵存为lmdb文件的主要内容,如果未能解决你的问题,请参考以下文章
深度学习文章3:将自己的图像数据转换成caffe需要的db(leveldb/lmdb)文件
3:将自己的图像数据转换成caffe需要的db(leveldb/lmdb)文件
3:将自己的图像数据转换成caffe需要的db(leveldb/lmdb)文件
用Python学习Caffe3. 图像训练测试数据集LMDB的生成