异常检测原理与实验
Posted 普通网友
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了异常检测原理与实验相关的知识,希望对你有一定的参考价值。
原创作品,出自 “晓风残月xj” 博客,欢迎转载,转载时请务必注明出处(http://blog.csdn.net/xiaofengcanyuexj)。
由于各种原因,可能存在诸多不足,欢迎斧正!
最近需要对欺诈报价进行识别处理,简单的模型就是给定很多不同数据集,需要找出每个spu下可能存在的欺诈数据,比如20,22,30,其中的欺诈数据可能就是30。其实加以抽象,属于异常检测范围。
异常检测是发现与大部分对象不同的对象,其中这些不同的对象称为离群点。一般异常检测的方法主要有数理统计法、数据挖掘方法。一般在预处理阶段发生的异常检测,更多的是依托数理统计的思想完成的。
一、基于模型
首先判断出数据的分布模型,比如某种分布(高斯分布、泊松分布等等)。然后根据原始数据(包括正常点与离群点),算出分布的参数,从而可以代入分布方程求出概率。例如高斯分布,根据原始数据求出期望u和方差?,然后拟合出高斯分布函数,从而求出原始数据出现的概率;根据数理统计的思想,概率小的可以当做离群点。
优点:
方法简单,无需训练,可以用在小数据集上。
缺点:
发现离群点效果差,离群点对模型参数影响大,造成区分效果差。需要数值化
import java.util.List;
/**
* 实现描述:计算正态分布
*
* @author jin.xu
* @version v1.0.0
* @see
* @since 16-9-9 下午12:02
*/
public class Gauss
public double getMean(List<Double> dataList)
double sum = 0;
for (double data : dataList)
sum += data;
double mean = sum;
if (dataList.size() > 0)
mean = sum / dataList.size();
return mean;
public double getStd(List<Double> dataList, double mean)
double sum = 0;
for (double data : dataList)
sum += (data - mean) * (data - mean);
double std = sum;
if (dataList.size() > 0)
std = sum / dataList.size();
return Math.sqrt(std);
public double getProbability(double data, double meam, double std)
double tmp = (1.0 / (Math.sqrt(2 * 3.141592653) * std)) * Math.exp(-(Math.pow(data - meam, 2) / (2 * Math.pow(std, 2))));
return tmp;
二、基于近邻度
需要度量对象之间的距离,离群点一般是距离大部分数据比较远的点。一般这种方法是计算每个点与其距离最近的k个点的距离和,然后累加起来,这就是K近邻方法。
优点:
原理简单,无需训练,可用在任何数据集
缺点:
需要计算距离,计算量大,K的选定以及多于K个离群点聚集在一起导致误判。
public class KNN
public static double process(int index,Position position, int k, List<Position> positionList)
List<Double> distances = Lists.newArrayList();
for (int i = 0; i < positionList.size(); ++i)
if (i != index)
distances.add(Math.sqrt(Math.pow((positionList.get(i).getX() - position.getX()), 2)+Math.pow((positionList.get(i).getY()-position.getY()),2)));
Collections.sort(distances);
k = k < distances.size() ? k : distances.size();
double knnDistance = 0.0;
for (int i = 0; i < k; ++i)
knnDistance += distances.get(i);
return knnDistance;
private static class Position
int x;
int y;
public int getX()
return x;
public void setX(int x)
this.x = x;
public int getY()
return y;
public void setY(int y)
this.y = y;
三、基于密度
低密度区域的数据点可以当做某种程度上的离群点。基于密度的和基于近邻的是密切相关的,简单来说,密度和近邻的距离成反比。一般的度量公式如下:
density(x,k)表示包含x的k近邻的密度,distance(x,y)表示x到y的距离,N(x,k)表示x的k近邻集合。
优点:
相对准确
缺点:
需要度量密度,需要设定阈值
四、基于聚类
丢弃远离其他聚类簇的小聚类簇。需要给出小聚类簇的大小阈值、聚类簇距离阈值。常用的聚类方法比较多,比如K-means(变种K-models)、EM、层次聚类算法(分裂型和归约型)。具体方法说明可见:漫话数据挖掘。
优点:
引入数据挖掘聚类的方法,在样本充足的情况下准确度会相对较高
缺点:
需要训练,计算量大,原理相对复杂
需要建立适当的模型,需要充足的训练样本
总之异常检测的通用方法大致有4种:基于模型、k近邻、基于密度和基于聚类的。实际使用数据是线上的报价,由于每个SPU下报价有限,聚类不适合,所以用基于模型的和k近邻的做了试验;基于密度的和K近邻差不多,而且需要密度范围的距离阈值,就没有选择。此外,涉及的实验数据是公司的,代码是兴趣使然,所以就不公布具体实验数据。
路漫漫其修远兮,很多时候感觉想法比较幼稚。首先东西比较简单,其次工作也比较忙,还好周末可以抽时间处理这个。由于相关知识积累有限,欢迎大家提意见斧正,在此表示感谢!后续版本会持续更新…
以上是关于异常检测原理与实验的主要内容,如果未能解决你的问题,请参考以下文章