利用Python多进程并行执行加快MySQL批量UPDATE执行速度
Posted robinson1988
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了利用Python多进程并行执行加快MySQL批量UPDATE执行速度相关的知识,希望对你有一定的参考价值。
现在有个表t
mysql> desc t;
+----------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------------+--------------+------+-----+---------+----------------+
| owner | varchar(30) | YES | | NULL | |
| object_name | varchar(128) | YES | | NULL | |
| subobject_name | varchar(30) | YES | | NULL | |
| object_id | int | NO | PRI | NULL | auto_increment |
| data_object_id | int | YES | | NULL | |
| object_type | varchar(19) | YES | | NULL | |
| created | datetime | YES | | NULL | |
| last_ddl_time | datetime | YES | | NULL | |
| timestamp | varchar(19) | YES | | NULL | |
| status | varchar(7) | YES | | NULL | |
| temporary | varchar(1) | YES | | NULL | |
| generate | varchar(1) | YES | | NULL | |
| secondary | varchar(1) | YES | | NULL | |
| namespace | int | YES | | NULL | |
| edition_name | varchar(30) | YES | | NULL | |
+----------------+--------------+------+-----+---------+----------------+
15 rows in set (0.00 sec)
一共有116w行数据
mysql> select count(*) from t;
+----------+
| count(*) |
+----------+
| 1167136 |
+----------+
1 row in set (0.17 sec)
想要执行update t set owner='SB';
肯定不能直接跑上面SQL,其一,这是一个大事务,会导致主从延迟,其次,SQL没有where过滤条件,会把整个表锁住
MySQL可以利用主键切片的方法对上面SQL进行切片:https://blog.csdn.net/robinson1988/article/details/106007292
对表根据主键切片之后,可以将数据分为多份,然后开多个窗口并行执行,这样就能加快UPDATE执行速度
下面是Python全自动主键切片+并行执行脚本,脚本里面是将数据切分为4分,开4个并行进程
from multiprocessing import Pool
import pymysql
import time
import os
import io
def processData(txt):
print('开始执行:', time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
command='mysql -uroot -poracle -Dtest <'+txt
os.system(command)
print('执行完成:', time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
return
if __name__ == '__main__':
conn = pymysql.connect("192.168.56.10", "scott", "tiger", "test")
cur = conn.cursor()
sql = "SELECT concat('update t set owner= ''SB'' where object_id>',avg_row * (n - 1),' and object_id<=', avg_row * n, ';') split_sql " \\
"FROM (SELECT n, min_id, max_id, ceil(max_id / 100) avg_row FROM (WITH RECURSIVE x(n) AS (SELECT 1 UNION ALL SELECT n + 1 FROM x WHERE n < 100" \\
") SELECT * FROM x) a, (SELECT min(object_id) min_id FROM t) b, (SELECT max(object_id) max_id FROM t) c ) a"
cur.execute(sql)
rows = []
result = cur.fetchall()
slice0 = open('slice0.txt', 'w', newline='', encoding='utf8')
slice1 = open('slice1.txt', 'w', newline='', encoding='utf8')
slice2 = open('slice2.txt', 'w', newline='', encoding='utf8')
slice3 = open('slice3.txt', 'w', newline='', encoding='utf8')
for i in range(1,len(result)+1):
if i%4==0:
slice0.writelines(result[i - 1][0] + '\\n')
elif i%4==1:
slice1.writelines(result[i - 1][0] + '\\n')
elif i%4==2:
slice2.writelines(result[i - 1][0] + '\\n')
elif i%4==3:
slice3.writelines(result[i - 1][0] + '\\n')
slice0.close()
slice1.close()
slice2.close()
slice3.close()
cur.close()
conn.close()
with Pool(4) as pool:
pool.map(processData,['slice0.txt','slice1.txt','slice2.txt','slice3.txt'])
单个窗口跑:
mysql> update t set owner='NC';
Query OK, 1167136 rows affected (40.34 sec)
Rows matched: 1167136 Changed: 1167136 Warnings: 0
根据主键切片开并行跑:
[root@server ~]# python3 update.py
开始执行: 2020-05-29 15:53:38
开始执行: 2020-05-29 15:53:38
开始执行: 2020-05-29 15:53:38
开始执行: 2020-05-29 15:53:38
mysql: [Warning] Using a password on the command line interface can be insecure.
mysql: [Warning] Using a password on the command line interface can be insecure.
mysql: [Warning] Using a password on the command line interface can be insecure.
mysql: [Warning] Using a password on the command line interface can be insecure.
执行完成: 2020-05-29 15:53:49
执行完成: 2020-05-29 15:53:49
执行完成: 2020-05-29 15:53:49
执行完成: 2020-05-29 15:53:50
可以看到开4个并行进程,总共只需要10秒钟就跑完了,单窗口跑要40秒,正好提升4倍性能
最后,要开多少个并行进程跟你机器CPU有关,不建议开超过CPU CORE这么多个并行进程
以上是关于利用Python多进程并行执行加快MySQL批量UPDATE执行速度的主要内容,如果未能解决你的问题,请参考以下文章