搞软件开发,请你来谈谈数据库连接池的原理吧
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了搞软件开发,请你来谈谈数据库连接池的原理吧相关的知识,希望对你有一定的参考价值。
参考技术A
这次我们采取技术演进的方式来谈谈数据库连接池的技术出现过程及其原理,以及当下最流行的开源数据库连接池jar包。
1、原理
一般来说,Java应用程序访问数据库的过程是 :
①装载数据库驱动程序;
②通过jdbc建立数据库连接;
③访问数据库,执行sql语句;
④断开数据库连接。
2、代码
3、分析
程序开发过程中,存在很多问题:首先,每一次web请求都要建立一次数据库连接。建立连接是一个费时的活动,每次都得花费0.05s~1s的时间,而且系统还要分配内存资源。这个时间对于一次或几次数据库操作,或许感觉不出系统有多大的开销。可是对于现在的web应用,尤其是大型电子商务网站,同时有几百人甚至几千人在线是很正常的事。在这种情况下,频繁的进行数据库连接操作势必占用很多的系统资源,网站的响应速度必定下降,严重的甚至会造成服务器的崩溃。不是危言耸听,这就是制约某些电子商务网站发展的技术瓶颈问题。其次,对于每一次数据库连接,使用完后都得断开。否则,如果程序出现异常而未能关闭,将会导致数据库系统中的内存泄漏,最终将不得不重启数据库。还有,这种开发不能控制被创建的连接对象数,系统资源会被毫无顾及的分配出去,如连接过多,也可能导致内存泄漏,服务器崩溃。
上述的用户查询案例,如果同时有1000人访问,就会不断的有数据库连接、断开操作:
通过上面的分析,我们可以看出来,“数据库连接”是一种稀缺的资源,为了保障网站的正常使用,应该对其进行妥善管理。其实我们查询完数据库后,如果不关闭连接,而是暂时存放起来,当别人使用时,把这个连接给他们使用。就避免了一次建立数据库连接和断开的操作时间消耗。原理如下:
由上面的分析可以看出,问题的根源就在于对数据库连接资源的低效管理。我们知道,对于共享资源,有一个很著名的设计模式:资源池(resource pool)。该模式正是为了解决资源的频繁分配﹑释放所造成的问题。为解决上述问题,可以采用数据库连接池技术。数据库连接池的基本思想就是为数据库连接建立一个“缓冲池”。预先在缓冲池中放入一定数量的连接,当需要建立数据库连接时,只需从“缓冲池”中取出一个,使用完毕之后再放回去。我们可以通过设定连接池最大连接数来防止系统无尽的与数据库连接。更为重要的是我们可以通过连接池的管理机制监视数据库的连接的数量﹑使用情况,为系统开发﹑测试及性能调整提供依据。
我们自己尝试开发一个连接池,来为上面的查询业务提供数据库连接服务:
① 编写class 实现DataSource 接口
② 在class构造器一次性创建10个连接,将连接保存LinkedList中
③ 实现getConnection 从 LinkedList中返回一个连接
④ 提供将连接放回连接池中方法
1、连接池代码
2、使用连接池重构我们的用户查询函数
这就是数据库连接池的原理,它大大提供了数据库连接的利用率,减小了内存吞吐的开销。我们在开发过程中,就不需要再关心数据库连接的问题,自然有数据库连接池帮助我们处理,这回放心了吧。但连接池需要考虑的问题不仅仅如此,下面我们就看看还有哪些问题需要考虑。
1、并发问题
为了使连接管理服务具有最大的通用性,必须考虑多线程环境,即并发问题。这个问题相对比较好解决,因为java语言自身提供了对并发管理的支持,使用synchronized关键字即可确保线程是同步的。使用方法为直接在类方法前面加上synchronized关键字,如:
2、多数据库服务器和多用户
对于大型的企业级应用,常常需要同时连接不同的数据库(如连接oracle和sybase)。如何连接不同的数据库呢?我们采用的策略是:设计一个符合单例模式的连接池管理类,在连接池管理类的唯一实例被创建时读取一个资源文件,其中资源文件中存放着多个数据库的url地址等信息。根据资源文件提供的信息,创建多个连接池类的实例,每一个实例都是一个特定数据库的连接池。连接池管理类实例为每个连接池实例取一个名字,通过不同的名字来管理不同的连接池。
对于同一个数据库有多个用户使用不同的名称和密码访问的情况,也可以通过资源文件处理,即在资源文件中设置多个具有相同url地址,但具有不同用户名和密码的数据库连接信息。
3、事务处理
我们知道,事务具有原子性,此时要求对数据库的操作符合“all-all-nothing”原则即对于一组sql语句要么全做,要么全不做。
在java语言中,connection类本身提供了对事务的支持,可以通过设置connection的autocommit属性为false 然后显式的调用commit或rollback方法来实现。但要高效的进行connection复用,就必须提供相应的事务支持机制。可采用每一个事务独占一个连接来实现,这种方法可以大大降低事务管理的复杂性。
4、连接池的分配与释放
连接池的分配与释放,对系统的性能有很大的影响。合理的分配与释放,可以提高连接的复用度,从而降低建立新连接的开销,同时还可以加快用户的访问速度。
对于连接的管理可使用空闲池。即把已经创建但尚未分配出去的连接按创建时间存放到一个空闲池中。每当用户请求一个连接时,系统首先检查空闲池内有没有空闲连接。如果有就把建立时间最长(通过容器的顺序存放实现)的那个连接分配给他(实际是先做连接是否有效的判断,如果可用就分配给用户,如不可用就把这个连接从空闲池删掉,重新检测空闲池是否还有连接);如果没有则检查当前所开连接池是否达到连接池所允许的最大连接数(maxconn)如果没有达到,就新建一个连接,如果已经达到,就等待一定的时间(timeout)。如果在等待的时间内有连接被释放出来就可以把这个连接分配给等待的用户,如果等待时间超过预定时间timeout 则返回空值(null)。系统对已经分配出去正在使用的连接只做计数,当使用完后再返还给空闲池。对于空闲连接的状态,可开辟专门的线程定时检测,这样会花费一定的系统开销,但可以保证较快的响应速度。也可采取不开辟专门线程,只是在分配前检测的方法。
5、连接池的配置与维护
连接池中到底应该放置多少连接,才能使系统的性能最佳?系统可采取设置最小连接数(minconn)和最大连接数(maxconn)来控制连接池中的连接。最小连接数是系统启动时连接池所创建的连接数。如果创建过多,则系统启动就慢,但创建后系统的响应速度会很快;如果创建过少,则系统启动的很快,响应起来却慢。这样,可以在开发时,设置较小的最小连接数,开发起来会快,而在系统实际使用时设置较大的,因为这样对访问客户来说速度会快些。最大连接数是连接池中允许连接的最大数目,具体设置多少,要看系统的访问量,可通过反复测试,找到最佳点。
如何确保连接池中的最小连接数呢?有动态和静态两种策略。动态即每隔一定时间就对连接池进行检测,如果发现连接数量小于最小连接数,则补充相应数量的新连接以保证连接池的正常运转。静态是发现空闲连接不够时再去检查。
理解了连接池的原理就可以了,没有必要什么都从头写一遍,那样会花费很多时间,并且性能及稳定性也不一定满足要求。事实上,已经存在很多流行的性能优良的第三方数据库连接池jar包供我们使用。如:
其中c3p0已经很久没有更新了。DBCP更新速度很慢,基本处于不活跃状态,而Druid和HikariCP处于活跃状态的更新中。
Android 底层原理你知多少?你来说说 Handler吧!
0. 前言
做 Android 开发肯定离不开跟 Handler 打交道,它通常被我们用来做主线程与子线程之间的通信工具,而 Handler 作为 Android 中消息机制的重要一员也确实给我们的开发带来了极大的便利。
可以说只要有异步线程与主线程通信的地方就一定会有 Handler。
那么,Handler 的通信机制的背后的原理是什么?
本文带你揭晓。
注意:本文所展示的系统源码基于 Android-27 ,并有所删减。
1. 重识 Handler
我们可以使用 Handler 发送并处理与一个线程关联的 Message 和 Runnable 。(注意:Runnable 会被封装进一个 Message,所以它本质上还是一个 Message )
每个 Handler 都会跟一个线程绑定,并与该线程的 MessageQueue 关联在一起,从而实现消息的管理以及线程间通信。
1.1 Handler 的基本用法
android.os.Handler handler = new Handler(){
@Override
public void handleMessage(final Message msg) {
//这里接受并处理消息
}
};
//发送消息
handler.sendMessage(message);
handler.post(runnable);
实例化一个 Handler 重写 handleMessage
方法 ,然后在需要的时候调用它的 send
以及 post
系列方法就可以了,非常简单易用,并且支持延时消息。(更多方法可查询 API 文档)
但是奇怪,我们并没有看到任何 MessageQueue 的身影,也没看到它与线程绑定的逻辑,这是怎么回事?
2. Handler 原理解析
相信大家早就听说过了 Looper 以及 MessageQueue 了,我就不多绕弯子了。
不过在开始分析原理之前,先明确我们的问题:
- Handler 是如何与线程关联的?
- Handler 发出去的消息是谁管理的?
- 消息又是怎么回到 handleMessage() 方法的?
- 线程的切换是怎么回事?
2.1 Handler 与 Looper 的关联
实际上我们在实例化 Handler 的时候 Handler 会去检查当前线程的 Looper 是否存在,如果不存在则会报异常,也就是说在创建 Handler 之前一定需要先创建 Looper 。
代码如下:
public Handler(Callback callback, boolean async) {
//检查当前的线程是否有 Looper
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
//Looper 持有一个 MessageQueue
mQueue = mLooper.mQueue;
}
这个异常相信很多同学遇到过,而我们平时直接使用感受不到这个异常是因为主线程已经为我们创建好了 Looper,先记住,后面会讲。(见【3.2】)
一个完整的 Handler 使用例子其实是这样的:
class LooperThread extends Thread {
public Handler mHandler;
public void run() {
Looper.prepare();
mHandler = new Handler() {
public void handleMessage(Message msg) {
// process incoming messages here
}
};
Looper.loop();
}
}
Looper.prepare() :
//Looper
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
Looper 提供了 Looper.prepare()
方法来创建 Looper ,并且会借助 ThreadLocal 来实现与当前线程的绑定功能。Looper.loop() 则会开始不断尝试从 MessageQueue 中获取 Message , 并分发给对应的 Handler(见【2.3】)。
也就是说 Handler 跟线程的关联是靠 Looper 来实现的。
2.2 Message 的存储与管理
Handler 提供了一些列的方法让我们来发送消息,如 send()系列 post()系列 。
不过不管我们调用什么方法,最终都会走到 MessageQueue.enqueueMessage(Message,long)
方法。
以 sendEmptyMessage(int)
方法为例:
//Handler
sendEmptyMessage(int)
-> sendEmptyMessageDelayed(int,int)
-> sendMessageAtTime(Message,long)
-> enqueueMessage(MessageQueue,Message,long)
-> queue.enqueueMessage(Message, long);
到了这里,消息的管理者 MessageQueue 也就露出了水面。
MessageQueue 顾明思议,就是个队列,负责消息的入队出队。
2.3 Message 的分发与处理
了解清楚 Message 的发送与存储管理后,就该揭开分发与处理的面纱了。
前面说到了 Looper.loop()
负责对消息的分发,本章节进行分析。
先来看看所涉及到的方法:
//Looper
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
//...
for (;;) {
// 不断从 MessageQueue 获取 消息
Message msg = queue.next(); // might block
//退出 Looper
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
//...
try {
msg.target.dispatchMessage(msg);
end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
} finally {
//...
}
//...
//回收 message, 见【3.5】
msg.recycleUnchecked();
}
}
loop()
里调用了 MessageQueue.next()
:
//MessageQueue
Message next() {
//...
for (;;) {
//...
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
//...
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
}
// Run the idle handlers. 关于 IdleHandler 自行了解
//...
}
}
还调用了 msg.target.dispatchMessage(msg)
,msg.target 就是发送该消息的 Handler,这样就回调到了 Handler 那边去了:
//Handler
public void dispatchMessage(Message msg) {
//msg.callback 是 Runnable ,如果是 post方法则会走这个 if
if (msg.callback != null) {
handleCallback(msg);
} else {
//callback 见【3.4】
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
//回调到 Handler 的 handleMessage 方法
handleMessage(msg);
}
}
注意:dispatchMessage() 方法针对 Runnable 的方法做了特殊处理,如果是 ,则会直接执行 Runnable.run()
。
分析:Looper.loop() 是个死循环,会不断调用 MessageQueue.next() 获取 Message ,并调用 msg.target.dispatchMessage(msg)
回到了 Handler 来分发消息,以此来完成消息的回调。
注意:loop()方法并不会卡死主线程,见【6】。
那么线程的切换又是怎么回事呢?
很多人搞不懂这个原理,但是其实非常简单,我们将所涉及的方法调用栈画出来,如下:
Thread.foo(){
Looper.loop()
-> MessageQueue.next()
-> Message.target.dispatchMessage()
-> Handler.handleMessage()
}
显而易见,Handler.handleMessage() 所在的线程最终由调用 Looper.loop() 的线程所决定。
平时我们用的时候从异步线程发送消息到 Handler,这个 Handler 的 handleMessage()
方法是在主线程调用的,所以消息就从异步线程切换到了主线程。
2.3 图解原理
文字版的原理解析到这里就结束了,如果你看到这里还是没有懂,没关系,我特意给你们准备了些图,配合着前面几个章节,再多看几遍,一定可以吃透。
2.4 小结
Handler 的背后有着 Looper 以及 MessageQueue 的协助,三者通力合作,分工明确。
尝试小结一下它们的职责,如下:
- Looper :负责关联线程以及消息的分发在该线程下**从 MessageQueue 获取 Message,分发给 Handler ;
- MessageQueue :是个队列,负责消息的存储与管理,负责管理由 Handler 发送过来的 Message ;
- Handler : 负责发送并处理消息,面向开发者,提供 API,并隐藏背后实现的细节。
对【2】章节提出的问题用一句话总结:
Handler 发送的消息由 MessageQueue 存储管理,并由 Loopler 负责回调消息到 handleMessage()。
线程的转换由 Looper 完成,handleMessage() 所在线程由 Looper.loop() 调用者所在线程决定。
3. Handler 的延伸
Handler 虽然简单易用,但是要用好它还是需要注意一点,另外 Handler相关 还有些鲜为人知的知识技巧,比如 IdleHandler。
由于 Handler 的特性,它在 Android 里的应用非常广泛,比如: AsyncTask、HandlerThread、Messenger、IdleHandler 和 IntentService 等等。
这些我会讲解一些,我没讲到的可以自行搜索相关内容进行了解。
3.1 Handler 引起的内存泄露原因以及最佳解决方案
Handler 允许我们发送延时消息,如果在延时期间用户关闭了 Activity,那么该 Activity 会泄露。
这个泄露是因为 Message 会持有 Handler,而又因为 Java 的特性,内部类会持有外部类,使得 Activity 会被 Handler 持有,这样最终就导致 Activity 泄露。
解决该问题的最有效的方法是:将 Handler 定义成静态的内部类,在内部持有 Activity 的弱引用,并及时移除所有消息。
示例代码如下:
private static class SafeHandler extends Handler {
private WeakReference<HandlerActivity> ref;
public SafeHandler(HandlerActivity activity) {
this.ref = new WeakReference(activity);
}
@Override
public void handleMessage(final Message msg) {
HandlerActivity activity = ref.get();
if (activity != null) {
activity.handleMessage(msg);
}
}
}
并且再在 Activity.onDestroy()
前移除消息,加一层保障:
@Override
protected void onDestroy() {
safeHandler.removeCallbacksAndMessages(null);
super.onDestroy();
}
这样双重保障,就能完全避免内存泄露了。
注意:单纯的在 onDestroy
移除消息并不保险,因为 onDestroy
并不一定执行。
3.2 为什么我们能在主线程直接使用 Handler,而不需要创建 Looper ?
前面我们提到了每个Handler 的线程都有一个 Looper ,主线程当然也不例外,但是我们不曾准备过主线程的 Looper 而可以直接使用,这是为何?
注意:通常我们认为 ActivityThread 就是主线程。事实上它并不是一个线程,而是主线程操作的管理者,所以吧,我觉得把 ActivityThread 认为就是主线程无可厚非,另外主线程也可以说成 UI 线程。
在 ActivityThread.main() 方法中有如下代码:
//android.app.ActivityThread
public static void main(String[] args) {
//...
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
thread.attach(false);
if (sMainThreadHandler == null) {
sMainThreadHandler = thread.getHandler();
}
//...
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
Looper.prepareMainLooper(); 代码如下:
/**
* Initialize the current thread as a looper, marking it as an
* application's main looper. The main looper for your application
* is created by the Android environment, so you should never need
* to call this function yourself. See also: {@link #prepare()}
*/
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
可以看到在 ActivityThread 里 调用了 Looper.prepareMainLooper() 方法创建了 主线程的 Looper ,并且调用了 loop() 方法,所以我们就可以直接使用 Handler 了。
注意:Looper.loop()
是个死循环,后面的代码正常情况不会执行。
3.3 主线程的 Looper 不允许退出
如果你尝试退出 Looper ,你会得到以下错误信息:
Caused by: java.lang.IllegalStateException: Main thread not allowed to quit.
at android.os.MessageQueue.quit(MessageQueue.java:415)
at android.os.Looper.quit(Looper.java:240)
why? 其实原因很简单,主线程不允许退出,退出就意味 APP 要挂。
3.4 Handler 里藏着的 Callback 能干什么?
在 Handler 的构造方法中有几个 要求传入 Callback ,那它是什么,又能做什么呢?
来看看 Handler.dispatchMessage(msg)
方法:
public void dispatchMessage(Message msg) {
//这里的 callback 是 Runnable
if (msg.callback != null) {
handleCallback(msg);
} else {
//如果 callback 处理了该 msg 并且返回 true, 就不会再回调 handleMessage
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
可以看到 Handler.Callback 有优先处理消息的权利 ,当一条消息被 Callback 处理并拦截(返回 true),那么 Handler 的 handleMessage(msg)
方法就不会被调用了;如果 Callback 处理了消息,但是并没有拦截,那么就意味着一个消息可以同时被 Callback 以及 Handler 处理。
这个就很有意思了,这有什么作用呢?
我们可以利用 Callback 这个拦截机制来拦截 Handler 的消息!
场景:Hook ActivityThread.mH , 在 ActivityThread 中有个成员变量 mH
,它是个 Handler,又是个极其重要的类,几乎所有的插件化框架都使用了这个方法。
3.5 创建 Message 实例的最佳方式
由于 Handler 极为常用,所以为了节省开销,Android 给 Message 设计了回收机制,所以我们在使用的时候尽量复用 Message ,减少内存消耗。
方法有二:
- 通过 Message 的静态方法
Message.obtain();
获取; - 通过 Handler 的公有方法
handler.obtainMessage();
。
3.6 子线程里弹 Toast 的正确姿势
当我们尝试在子线程里直接去弹 Toast 的时候,会 crash :
java.lang.RuntimeException: Can't create handler inside thread that has not called Looper.prepare()
本质上是因为 Toast 的实现依赖于 Handler,按子线程使用 Handler 的要求修改即可(见【2.1】),同理的还有 Dialog。
正确示例代码如下:
new Thread(new Runnable() {
@Override
public void run() {
Looper.prepare();
Toast.makeText(HandlerActivity.this, "不会崩溃啦!", Toast.LENGTH_SHORT).show();
Looper.loop();
}
}).start();
3.7 妙用 Looper 机制
我们可以利用 Looper 的机制来帮助我们做一些事情:
- 将 Runnable post 到主线程执行;
- 利用 Looper 判断当前线程是否是主线程。
完整示例代码如下:
public final class MainThread {
private MainThread() {
}
private static final Handler HANDLER = new Handler(Looper.getMainLooper());
public static void run(@NonNull Runnable runnable) {
if (isMainThread()) {
runnable.run();
}else{
HANDLER.post(runnable);
}
}
public static boolean isMainThread() {
return Looper.myLooper() == Looper.getMainLooper();
}
}
能够省去不少样板代码。
4. 知识点汇总
由前文可得出一些知识点,汇总一下,方便记忆。
- Handler 的背后有 Looper、MessageQueue 支撑,Looper 负责消息分发,MessageQueue 负责消息管理;
- 在创建 Handler 之前一定需要先创建 Looper;
- Looper 有退出的功能,但是主线程的 Looper 不允许退出;
- 异步线程的 Looper 需要自己调用
Looper.myLooper().quit();
退出; - Runnable 被封装进了 Message,可以说是一个特殊的 Message;
Handler.handleMessage()
所在的线程是 Looper.loop() 方法被调用的线程,也可以说成 Looper 所在的线程,并不是创建 Handler 的线程;- 使用内部类的方式使用 Handler 可能会导致内存泄露,即便在 Activity.onDestroy 里移除延时消息,必须要写成静态内部类;
5. 总结
Handler 简单易用的背后藏着工程师大量的智慧,要努力向他们学习。
想要了解更多 Android 底层知识点,如Handler、Binder 等相关知识点,大家可以点击下方小卡片进行访问阅读
以上是关于搞软件开发,请你来谈谈数据库连接池的原理吧的主要内容,如果未能解决你的问题,请参考以下文章