SPARK push-based shuffle mapTask是怎么获取ESS列表信息

Posted 鸿乃江边鸟

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SPARK push-based shuffle mapTask是怎么获取ESS列表信息相关的知识,希望对你有一定的参考价值。

背景

本文基于SPARK 3.2.1
之前的文章SPARK SHUFFLE中 ShuffleId BlockManagerId 以及 与ESS(External Shuffle Server)交互,我们只是讲了一下大概的shuffle流程,这次来分析一下push-based shuffle,
便于更好的理解spark shuffle中push-based shuffle.

分析

直接跳到ShuffleMapTask的RunTask方法:

override def runTask(context: TaskContext): MapStatus = 
    ...
    dep.shuffleWriterProcessor.write(rdd, dep, mapId, context, partition)

之后就会转到以下方法:

...
if (mapStatus.isDefined) 
        // Check if sufficient shuffle mergers are available now for the ShuffleMapTask to push
        if (dep.shuffleMergeAllowed && dep.getMergerLocs.isEmpty) 
          val mapOutputTracker = SparkEnv.get.mapOutputTracker
          val mergerLocs =
            mapOutputTracker.getShufflePushMergerLocations(dep.shuffleId)
          if (mergerLocs.nonEmpty) 
            dep.setMergerLocs(mergerLocs)
          
        
        // Initiate shuffle push process if push based shuffle is enabled
        // The map task only takes care of converting the shuffle data file into multiple
        // block push requests. It delegates pushing the blocks to a different thread-pool -
        // ShuffleBlockPusher.BLOCK_PUSHER_POOL.
        if (!dep.shuffleMergeFinalized) 
          manager.shuffleBlockResolver match 
            case resolver: IndexShuffleBlockResolver =>
              logInfo(s"Shuffle merge enabled with $dep.getMergerLocs.size merger locations " +
                s" for stage $context.stageId() with shuffle ID $dep.shuffleId")
              logDebug(s"Starting pushing blocks for the task $context.taskAttemptId()")
              val dataFile = resolver.getDataFile(dep.shuffleId, mapId)
              new ShuffleBlockPusher(SparkEnv.get.conf)
                .initiateBlockPush(dataFile, writer.getPartitionLengths(), dep, partition.index)
            case _ =>
          
        
      
...

首先是如果发现该shuffle阶段没有对应的merge server,就会从mapOutputTracker去获取对应的ShufflePushMergerLocation(整个数据流如下):

MapOutputTrackerWorker.getShufflePushMergerLocations
                 ||
                 \\/
             向 MapOutputTrackerMaster发送 GetShufflePushMergerLocations消息
                 ||
                 \\/
             MapOutputTrackerMaster 向MapOutputTrackerMaster 发送GetShufflePushMergersMessage消息
                 ||
                 \\/
             返回shuffleStatuses.get(shuffleId).map(_.getShufflePushMergerLocations)

而shuffleStatuses的初始化是在DAGSchduler中的,整个的数据流入下:

DAGSchduler调用getOrCreateParentStages创建Stage
                ||
                \\/
                createShuffleMapStage
                ||
                \\/
                mapOutputTrackerMaster.registerShuffle(shuffleDep.shuffleId, rdd.partitions.length,shuffleDep.partitioner.numPartitions) //注册对应的shuffId
                ||
                \\/
                shuffleStatuses.put(shuffleId, new ShuffleStatus(numMaps, numReduces)) //注册上shuffleId和ShuffleStatus的关系

而一开始ShuffleStatus里面的getShufflePushMergerLocations返回的是空列表,
shufflePushMergerLocations的值是在executor注册启动的时候被填充的,如下数据流:

   makeOffers
   val activeExecutors = executorDataMap.filterKeys(isExecutorActive) //executorDataMap的信息在executor启动的时候就会被填充
   scheduler.resourceOffers
             ||
             \\/
             executorAdded(o.executorId, o.host) 
             ||
             \\/
             dagScheduler.executorAdded(execId, host)
             ||
             \\/
             dagScheduler向dagScheduler发动ExecutorAdded消息
             ||
             \\/
             dagScheduler.handleExecutorAdded(execId, host)
             ||
             \\/
             mapOutputTracker.registerShufflePushMergerLocations(stage.shuffleDep.shuffleId,
              stage.shuffleDep.getMergerLocs)    //stage.shuffleDep.getMergerLocs的信息是在提交任务的时候填充的,  =》  DAGSchudler.submitMissingTasks
                                                                                                                             ||
                                                                                                                             \\/
                                                                                                                             prepareShuffleServicesForShuffleMapStage
                                                                                                                             ||
                                                                                                                             \\/
                                                                                                                             getAndSetShufflePushMergerLocations
                                                                                                                             ||
                                                                                                                             \\/
                                                                                                                             sc.schedulerBackend.getShufflePushMergerLocations
                                                                                                                             ||
                                                                                                                             \\/
                                                                                                                             val mergerLocations = blockManagerMaster
      .getShufflePushMergerLocations(numMergersDesired, scheduler.excludedNodes()) //这里直接通过blockManagerMaster获取到对应的mergerLocations,而blockManagerMaster获取得到的BlockManagerId信息也是在blockMangerinitialize初始化的时候注册上的
                      
  

这样 在shuffleMapTask运行的时候能获得了mergerLocs位置信息。
再回到shuffleWriterProcessor.write方法中来,获得了mergerLocs以后,就会调用new ShuffleBlockPusher(SparkEnv.get.conf).initiateBlockPush方法进行推送,
推动方式是以一致的方式确定这个分组和相应的ESS目的地,从而将属于同一个shuffle分区的不同 mappers的块推到同一ESS。
至此push-based shuffle大概数据流就分析到此了。

以上是关于SPARK push-based shuffle mapTask是怎么获取ESS列表信息的主要内容,如果未能解决你的问题,请参考以下文章

spark和mapreduce的shuffle

spark 4种 shuffle机制与mapreduce shuffle机制对比

Spark的Shuffle是怎么回事

Spark中的Spark Shuffle详解

Spark shuffle调优

只了解MapReduce的Shuffle?Spark Shuffle了解一下