Elasticsearch 分布式搜索引擎 -- 初识elasticsearch(了解ES倒排索引es的一些概念安装eskibana)

Posted CodeJiao

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Elasticsearch 分布式搜索引擎 -- 初识elasticsearch(了解ES倒排索引es的一些概念安装eskibana)相关的知识,希望对你有一定的参考价值。

文章目录

1. 初识elasticsearch


1.1了解ES


1.1.1 elasticsearch的作用

elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

例如:

  • 在GitHub搜索代码
  • 在电商网站搜索商品
  • 在百度搜索bug解决方案
  • 在打车软件搜索附近的车

1.1.2 ELK技术栈

elasticsearch结合kibanaLogstashBeats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:

elasticsearchelastic stack的核心,负责存储、搜索、分析数据。


1.1.3 elasticsearch和lucene

elasticsearch底层是基于lucene来实现的。

Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址

elasticsearch的发展历史:

  • 2004年Shay Banon基于Lucene开发了Compass
  • 2010年Shay Banon 重写了Compass,取名为Elasticsearch。


1.1.4 为什么不是其他搜索技术

目前比较知名的搜索引擎技术排名:

  1. Elasticsearch:开源的分布式搜索引擎
  2. Splunk:商业项目
  3. Solr: Apache的开源搜索引擎

虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头:


1.1.5 小结


1.2 倒排索引

倒排索引的概念是基于mysql这样的正向索引而言的。

1.2.1 正向索引

那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:

如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是title符合"%手机%"

2)逐行获取数据,比如id1的数据

3)判断数据中的title是否符合用户搜索条件

4)如果符合则放入结果集,不符合则丢弃。回到步骤1

逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万级时,就是一场灾难。


1.2.2 倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息。
  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条。

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条
  • 创建表,每行数据包括词条、词条所在文档id、位置等信息
  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:

倒排索引的搜索流程如下(以搜索"华为手机"为例):

  1. 用户输入条件"华为手机"进行搜索。
  2. 对用户输入内容分词,得到词条:华为手机
  3. 拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。
  4. 拿着文档id到正向索引中查找具体文档。

如图:

虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。


1.2.3 正向和倒排

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

是不是恰好反过来了?

那么两者方式的优缺点是什么呢?

正向索引

  • 优点:
    • 可以给多个字段创建索引
    • 根据索引字段搜索、排序速度非常快
  • 缺点:
    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:
    • 根据词条搜索、模糊搜索时,速度非常快
  • 缺点:
    • 只能给词条创建索引,而不是字段
    • 无法根据字段做排序

1.2.4 小结


1.3 ES的一些概念

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。


1.3.1 文档和字段

elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:


而Json文档中往往包含很多的字段(Field),类似于数据库中的列。


1.3.2 索引和映射

索引(Index):就是相同类型的文档的集合。
映射(mapping):索引中文档的字段约束信息,类似表的结构约束。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

    因此,我们可以把索引当做是数据库中的

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。


1.3.3 mysql与elasticsearch

我们统一的把mysqlelasticsearch的概念做一下对比:

MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

是不是说,我们学习了elasticsearch就不再需要mysql了呢?

并不是如此,两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现
  • 两者再基于某种方式,实现数据的同步,保证一致性


1.4 小结


2. 安装elasticsearch、kibana

为什么安装了elasticsearch还要安装kibana

kibana里面提供了一个DevTools工具,可以让我们非常方便的去编写elasticsearch里面的DSL语句,从而更好的去操作elasticsearch

2.1 创建网络

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:

docker network create 网络名

示例:


2.2 加载镜像

命令行执行下面的命令,这里我们采用elasticsearch7.12.1版本的镜像。

拉取elasticsearch镜像

docker pull elasticsearch:7.12.1

拉取kibana镜像

docker pull kibana:7.12.1

2.3 部署elasticsearch

运行docker命令,部署单点es

docker run -d \\
	--name es \\
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \\
    -e "discovery.type=single-node" \\
    -v es-data:/usr/share/elasticsearch/data \\
    -v es-plugins:/usr/share/elasticsearch/plugins \\
    --privileged \\
    --network es-net \\
    -p 9200:9200 \\
    -p 9300:9300 \\
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入一个名为es-net的网络中
  • -p 9200:9200:端口映射配置

运行结果:


在浏览器中输入:http://yourIp:9200 即可看到elasticsearch的响应结果:

说明:

YourIp是你的镜像仓库所在的电脑的ip

我们先查看linuxip

这是我电脑ip

192.168.135.130

2.4 部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。


2.4.1 部署kibana

运行docker命令,部署kibana

docker run -d \\
--name kibana \\
-e ELASTICSEARCH_HOSTS=http://es:9200 \\
--network=es-net \\
-p 5601:5601  \\
kibana:7.12.1
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置

运行结果:

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

此时,在浏览器输入地址访问:http://yourIp:5601,即可看到结果


2.4.2 DevTools


kibana中提供了一个DevTools界面:

这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

他的本质是发送一个的请求到es中:



以上是关于Elasticsearch 分布式搜索引擎 -- 初识elasticsearch(了解ES倒排索引es的一些概念安装eskibana)的主要内容,如果未能解决你的问题,请参考以下文章

ElasticSearch logo 分布式搜索引擎 ElasticSearch

550Elasticsearch详细入门教程系列 -分布式全文搜索引擎 Elasticsearch 2023.03.31

十次方项目第四天(分布式搜索引擎ElasticSearch)

分布式搜索引擎ElasticSearch学习(安装)

分布式全文搜索引擎——Elasticsearch

分布式爬虫之elasticsearch基础1