Flink的累加器和广播变量广播流分布式缓存

Posted 月疯

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Flink的累加器和广播变量广播流分布式缓存相关的知识,希望对你有一定的参考价值。

1、Accumulator累加器 


Accumulator即累加器,与Mapreduce counter的应用场景差不多,都能很好地观察task在运行期间的数据变化。可以在Flink job任务中的算子函数中使用累加器,但是只能在任务执行结束后才能获得累加器的最终结果。Counter是一个具体的累加器(Accumulator)实现,常用的Counter有IntCounter,LongCounter和DoubleCounter。

用法:

    1:创建累加器
    private IntCounter numLines = new IntCounter();
    2:注册累加器
    getRuntimeContext().addAccumulator("num-lines",this.numLines);
    3:使用累加器
    this.numLines.add(1);
    4:获取累加器的结果
    myJobExcutionResult.getAccumulatorResult("num-lines")

 案列:统计map算子处理数据的条数

package Flink_API;

import org.apache.flink.api.common.accumulators.IntCounter;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.MapOperator;
import org.apache.flink.configuration.Configuration;

/**
 * 统计一下map函数处理了多少条数据
 */
public class BatchCounterTest 
    public static void main(String[] args) throws Exception 

        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

        DataSource<String> dataSource=env.fromElements("1","2","3","4","5");

        DataSet<String> map = dataSource.map(new RichMapFunction<String, String>() 
            //            1:创建累加器
            private IntCounter numLines = new IntCounter();

            @Override
            public void open(Configuration parameters) throws Exception 
                //注册累加器
                getRuntimeContext().addAccumulator("num-lines", numLines);
            

            @Override
            public String map(String s) throws Exception 
               //使用累加器
                numLines.add(1);
                return s;
            
        ).setParallelism(5);
        map.print();
        env.execute("BatchCounterTest");
    

2、广播变量:是通过广播将广播变量分发到taskmanager中进行处理

广播变量的使用步骤:
    1、初始化数据
    DataSet<Integer> toBroadcast = env.fromElements(1,2,3);
    2、广播数据(即注册数据,那个算子用,就在那个算子后面进行注册)
    算子.withBroadcastSet(toBroadcast,"broadcastSetName");
    3、获取数据
    Collection<Integer> broadcastSet = getRuntimeContext().getBroadcastVariable("broadcastSetName");


实例程序:Flink从数据园中静静可以获取到用户的性命,最终需要将用户的性命和年龄信息打印出来。

package Flink_API;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

public class BatchBroadcastTest 
    public static void main(String[] args)
        //获取Flink的运行环境
        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
        //准备需要的广播数据
        ArrayList<Tuple2<String,Integer>> broadData=new ArrayList<>();
        broadData.add(new Tuple2<>("wtt",29));
        broadData.add(new Tuple2<>("lidong",30));
        broadData.add(new Tuple2<>("hengda",40));
        DataSource<Tuple2<String,Integer>> tupleData=env.fromCollection(broadData);

        //处理需要广播的数据,将数据集转换成Map类型,Map中的key就是用户的性命,value就是用户年龄。
        DataSet<HashMap<String,Integer>> toBroadCast = tupleData.map(new MapFunction<Tuple2<String, Integer>, HashMap<String,Integer>>() 
            @Override
            public HashMap<String, Integer> map(Tuple2<String, Integer> stringIntegerTuple2) throws Exception 
                HashMap<String,Integer> hashMap=new HashMap<>();
                hashMap.put(stringIntegerTuple2.f0,stringIntegerTuple2.f1);
                return hashMap;
            
        ).setParallelism(3);//到此,广播的数据已经准备好了

        //注意:在这里使用RichMapFunction获取广播变量
        //数据源单纯的姓名信息
        DataSource<String> nameDataSource = env.fromElements("wtt","lidong","hengda");

        DataSet<String> data=nameDataSource.map(new RichMapFunction<String, String>() 

            List<HashMap<String,Integer>> broadCastMap=new ArrayList<HashMap<String,Integer>>();
            HashMap<String,Integer> allMap=new HashMap<String,Integer>();

            /**
             * 1、类似MR当中的setup方法,只会执行一次
             * 2、可以在这里进行一些初始化操作
             * 3、可以在open方法当中获取广播变量
             */
            @Override
            public void open(Configuration parameters) throws Exception 
                super.open(parameters);
                //获取广播数据
                broadCastMap = getRuntimeContext().getBroadcastVariable("toBroadCastMapName");
                for(HashMap map:broadCastMap)
                    allMap.putAll(map);//最终保存的格式就是"name":"age"

                
            
            /**
             *
             *每次条用map方法从allMap中获取数据即可
             */
            @Override
            public String map(String s) throws Exception 
                return s;
            
        );
    

3、广播流:批处理当中就是广播变量,流处理当中就是广播流

package Flink_API;

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.common.state.BroadcastState;
import org.apache.flink.api.common.state.MapStateDescriptor;
import org.apache.flink.api.common.state.ReadOnlyBroadcastState;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.BroadcastStream;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.streaming.api.functions.co.BroadcastProcessFunction;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;
import org.apache.flink.streaming.util.serialization.KeyedDeserializationSchema;
import org.apache.flink.util.Collector;

import java.io.Serializable;
import java.util.Properties;

//广播流
public class FlinkBroadcastStream 

    public static void main(String[] args) throws Exception 
        //创建运行环境
        StreamExecutionEnvironment env=StreamExecutionEnvironment.getExecutionEnvironment();
        //Flink是以数据自带的时间戳字段为准
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        //设置并行度
        env.setParallelism(1);

         //1、获取第一个流,获取用户的浏览信息
        DataStream<UserBrowseLog> browseStream = getUserBrowseDataStream(env);
        //获取用户的黑名单流信息
        //2、获取用户的点击信息
        DataStream<BlackUser> blackUserDataStream = getUserBlackUserDataStream(env);

        //1定义一个MapStateDescriptor来描述我们要广播的数据的格式
        MapStateDescriptor<String,BlackUser> descriptor=new MapStateDescriptor<String, BlackUser>("userBlackList",String.class,BlackUser.class);

        //2将其中的配置数据源注册成广播流
        BroadcastStream<BlackUser> broadcastStream = blackUserDataStream.broadcast(descriptor);


        //3通过connect连接主流和广播流
        DataStream<UserBrowseLog> filterDataStream = browseStream.connect(broadcastStream)
                .process(new BroadcastProcessFunction<UserBrowseLog, BlackUser, UserBrowseLog>()
                    @Override
                    public void processElement(UserBrowseLog value, ReadOnlyContext readOnlyContext, Collector<UserBrowseLog> collector) throws Exception 
                          //从广播中获取对应的key的value
                        ReadOnlyBroadcastState<String,BlackUser> broadcastState=readOnlyContext.getBroadcastState(descriptor);
                        BlackUser blackUser=broadcastState.get(value.userID);
                        if(blackUser !=null)
                            System.out.print("用户"+value.userID + "在黑名单中,过滤掉该用户的浏览信息");
                        else
                            collector.collect(value);
                        
                    

                    @Override
                    public void processBroadcastElement(BlackUser value, Context context, Collector<UserBrowseLog> collector) throws Exception 
                        //实时更新广播流当中的数据
                        BroadcastState<String,BlackUser> broadcastState=context.getBroadcastState(descriptor);
                        broadcastState.put(value.userID,value);
                        System.out.print("------------------>广播流当前的数据是:---------------->");
                        System.out.print(broadcastState);
                    
                );
        filterDataStream.print();
        env.execute("FlinkBroadcastStream");
    

    private static DataStream<UserBrowseLog> getUserBrowseDataStream(StreamExecutionEnvironment env) 
        Properties consumerProperties = new Properties();
        consumerProperties.setProperty("bootstrap.severs","page01:9001");
        consumerProperties.setProperty("grop.id","browsegroup");

        DataStreamSource<String> dataStreamSource=env.addSource(new FlinkKafkaConsumer010<String>("browse_topic", (KeyedDeserializationSchema<String>) new SimpleStringSchema(),consumerProperties));

        DataStream<UserBrowseLog> processData=dataStreamSource.process(new ProcessFunction<String, UserBrowseLog>() 
            @Override
            public void processElement(String s, Context context, Collector<UserBrowseLog> collector) throws Exception 
                try
                    UserBrowseLog browseLog = com.alibaba.fastjson.JSON.parseObject(s, UserBrowseLog.class);
                    if(browseLog !=null)
                        collector.collect(browseLog);
                    
                catch(Exception e)
                    System.out.print("解析Json——UserBrowseLog异常:"+e.getMessage());
                
            
        );
        //设置watermark
        return processData;
    

    private static DataStream<BlackUser> getUserBlackUserDataStream(StreamExecutionEnvironment env) 
        Properties consumerProperties = new Properties();
        consumerProperties.setProperty("bootstrap.severs","page01:9002");
        consumerProperties.setProperty("grop.id","browsegroup");

        DataStreamSource<String> dataStreamSource=env.addSource(new FlinkKafkaConsumer010<String>("browse_topic", (KeyedDeserializationSchema<String>) new SimpleStringSchema(),consumerProperties));

        DataStream<BlackUser> processData=dataStreamSource.process(new ProcessFunction<String, BlackUser>() 
            @Override
            public void processElement(String s, Context context, Collector<BlackUser> collector) throws Exception 
                try
                    BlackUser blackUser = com.alibaba.fastjson.JSON.parseObject(s, BlackUser.class);
                    if(blackUser !=null)
                        collector.collect(blackUser);
                    
                catch(Exception e)
                    System.out.print("解析Json——UserBrowseLog异常:"+e.getMessage());
                
            
        );
        return processData;
    
    //定义用户黑名单的配置信息
    public static class BlackUser implements Serializable
        private String userID;
        private String userName;
        public BlackUser()

        

        public BlackUser(String userID, String userName) 
            this.userID = userID;
            this.userName = userName;
        

        public String getUserID() 
            return userID;
        

        public void setUserID(String userID) 
            this.userID = userID;
        

        public String getUserName() 
            return userName;
        

        public void setUserName(String userName) 
            this.userName = userName;
        
    
    //浏览类
    public static class UserBrowseLog implements Serializable 
        private String userID;
        private String eventTime;
        private String eventType;
        private String productID;
        private Integer productPrice;

        public String getUserID() 
            return userID;
        

        public void setUserID(String userID) 
            this.userID = userID;
        

        public String getEventTime() 
            return eventTime;
        

        public void setEventTime(String eventTime) 
            this.eventTime = eventTime;
        

        public String getEventType() 
            return eventType;
        

        public void setEventType(String eventType) 
            this.eventType = eventType;
        

        public String getProductID() 
            return productID;
        

        public void setProductID(String productID) 
            this.productID = productID;
        

        public Integer getProductPrice() 
            return productPrice;
        

        public void setProductPrice(Integer productPrice) 
            this.productPrice = productPrice;
        

        @Override
        public String toString() 
            return "UserBrowseLog" +
                    "userID='" + userID + '\\'' +
                    ", eventTime='" + eventTime + '\\'' +
                    ", eventType='" + eventType + '\\'' +
                    ", productID='" + productID + '\\'' +
                    ", productPrice=" + productPrice +
                    '';
        
    

4、Flink分布式缓存Distributed Cache

  • Flink提供了一个分布式缓存,类似于hadoop,可以使用户在并行函数中很方便的读取本地文件,并把它放在taskmanager节点中,防止task重复拉取。
  • 此缓存的工作机制如下:程序注册一个文件或者目录(本地或者远程文件系统,例如hdfs或者s3),通过ExecutionEnvironment注册缓存文件并为它起一个名称。当程序执行,Flink自动将文件或者目录复制到所有taskmanager节点的本地文件系统,仅会执行一次。用户可以通过这个指定的名称查找文件或者目录,然后从taskmanager节点的本地文件系统访问它

注册: 

//获取运行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
//1:注册一个文件,可以使用hdfs上的文件 也可以是本地文件进行测试
env.registerCachedFile("/Users/wangzhiwu/WorkSpace/quickstart/text","a.txt");

使用: 

 File myFile = getRuntimeContext().getDistributedCache().getFile("a.text");

 a.text文件


hello flink hello FLINK

完整代码:

public class DisCacheTest 
    public static void main(String[] args) throws Exception
        //获取运行环境
        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
        //1:注册一个文件,可以使用hdfs上的文件 也可以是本地文件进行测试
      
        env.registerCachedFile("/Users/wangzhiwu/WorkSpace/quickstart/text","a.txt");
        DataSource<String> data = env.fromElements("a", "b", "c", "d");
        DataSet<String> result = data.map(new RichMapFunction<String, String>() 
            private ArrayList<String> dataList = new ArrayList<String>();
            @Override
            public void open(Configuration parameters) throws Exception 
                super.open(parameters);
                //2:使用文件
                File myFile = getRuntimeContext().getDistributedCache().getFile("a.txt");
                List<String> lines = FileUtils.readLines(myFile);
                for (String line : lines) 
                    this.dataList.add(line);
                    System.err.println("分布式缓存为:" + line);
                
            
            @Override
            public String map(String value) throws Exception 
                //在这里就可以使用dataList
                System.err.println("使用datalist:" + dataList + "------------" +value);
                //业务逻辑
                return dataList +":" +  value;
            
        );
        result.printToErr();
    
//

 

以上是关于Flink的累加器和广播变量广播流分布式缓存的主要内容,如果未能解决你的问题,请参考以下文章

sparksql缓存表能做广播变量吗

Spark 累加器

Spark学习之路 Spark的广播变量和累加器

Spark流处理中的广播变量

Spark(20)——广播变量和累加器

Spark入门3(累加器和广播变量)