步态识别基于CNN步态能量图+HOG特征提取的步态识别算法的MATLAB仿真

Posted fpga&matlab

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了步态识别基于CNN步态能量图+HOG特征提取的步态识别算法的MATLAB仿真相关的知识,希望对你有一定的参考价值。

    卷积层的结构如下所示:

具体可以看如下的网址:

这个是传统的卷积神经网络。我们按这个进行设计。仿真结果如下:

 他的识别率为88.89%。

然后我这里介绍下我们的改进思路,改进思路如下所示:

此外, 影响卷积网络的参数主要为学习率的设置,然后我们通过WOA优化算法计算最优的学习率。关于WOA的原理,请参考文献:

 这个部分,将得到的最优的学习率为:0.0408

训练过程为:

 通过测试可以知道,

GRNN识别率为80%

CNN的识别率为88.89%

基于改进CNN,识别率为:95.56%

部分核心代码如下:

clc;
clear;
close all;
warning off;
addpath 'subfunc\\'

rng(1);
digitDatasetPath = ['步态能量图\\'];
imds = imageDatastore(digitDatasetPath,'IncludeSubfolders', true, 'LabelSource', 'foldernames');
 
%划分数据为训练集合验证集,训练集中每个类别包含1张图像,验证集包含其余图像的标签
numTrainFiles               = 1;%设置每个类别的训练个数
[imdsTrain, imdsValidation] = splitEachLabel(imds, numTrainFiles, 'randomize');

%定义卷积神经网络的基础结构
layers = [
    imageInputLayer([400 150 1]);%注意,400,150为能量图的大小,不能改
    %第1个卷积层
    convolution2dLayer(3, 8, 'Padding', 'same');%第一个卷积层
    batchNormalizationLayer;
    %第1个激励层
    reluLayer;
    %第1个池化层
    maxPooling2dLayer(2, 'Stride', 2);
    %第2个卷积层
    convolution2dLayer(3, 8, 'padding', 'same');
    batchNormalizationLayer;
    %第2个激励层
    reluLayer;
    %第2个池化层
    maxPooling2dLayer(2, 'Stride', 2);
    %第3个卷积层
    convolution2dLayer(3, 16, 'Padding', 'same');
    batchNormalizationLayer;
    %第3个激励层
    reluLayer;
    %第3个池化层
    maxPooling2dLayer(2, 'Stride', 2);
    %全连接层1
    fullyConnectedLayer(5);
    %softmax
    softmaxLayer;
    %输出分类结果
    classificationLayer;];
%设置训练参数


Num          = 10;   %搜索数量
Iters        = 10;    %迭代次数
D            = 1;   %搜索空间维数
woa_idx      = zeros(1,D);
woa_get      = inf; 

%初始化种群的个体
%初始化种群的个体
Xmin = 0;
Xmax = 1;
xwoa=rand(Num,D);
for t=1:Iters
    t
    for i=1:Num
        %目标函数更新
        [pa(i)]  = fitness(xwoa(i,:),imdsTrain, imdsValidation,layers);
        Fitout   = pa(i);
        %更新
        if Fitout < woa_get  
            woa_get = Fitout; 
            woa_idx = xwoa(i,:);
        end
    end
    %调整参数
    c1 = 2-t*((1)/Iters); 
    c2 =-1+t*((-1)/Iters);
%     w  = 0.1+0.8*(cos(std(pa)));
    %位置更新
    for i=1:Num
        rng(i);
        r1         = rand();
        r2         = rand();
        K1         = 2*c1*r1-c1;  
        K2         = 2*r2;             
        l          =(c2-1)*rand + 1;  
        rand_flag  = rand();   
        
        if rand_flag<0.5   
           if abs(K1)>=1
              RLidx    = floor(Num*rand()+1);
              X_rand   = xwoa(RLidx, :);
              D_X_rand = abs(K2*X_rand(1:D)-xwoa(i,1:D)); 
              xwoa(i,1:D)= X_rand(1:D)-K1*D_X_rand;     
           else
              D_Leader = abs(K2*woa_idx(1:D)-xwoa(i,1:D)); 
              xwoa(i,1:D)= woa_idx(1:D)-K1*D_Leader;    
           end
        else
            distLeader = abs(woa_idx(1:D)-xwoa(i,1:D));
            xwoa(i,1:D)  = distLeader*exp(l).*cos(l.*2*pi)+woa_idx(1:D);
        end
 
    end
    [pb]  = fitness(woa_idx,imdsTrain, imdsValidation,layers);
end
rng(1);
options = trainingOptions('sgdm', ...
    'InitialLearnRate', abs(woa_idx/5), ...
    'MaxEpochs', 200, ...
    'Shuffle', 'every-epoch', ...
    'ValidationData', imdsValidation, ...
    'ValidationFrequency', 10, ...
    'Verbose', false, ...
    'Plots', 'training-progress');

%使用训练集训练网络
net         = trainNetwork(imdsTrain, layers, options);

%对验证图像进行分类并计算精度
YPred       = classify(net, imdsValidation);
YValidation = imdsValidation.Labels;

accuracy    = sum(YPred == YValidation) / numel(YValidation);
accuracy

 




运行结果如下:

 

A05-77

以上是关于步态识别基于CNN步态能量图+HOG特征提取的步态识别算法的MATLAB仿真的主要内容,如果未能解决你的问题,请参考以下文章

步态识别基于CNN深度学习的步态识别算法的MATLAB仿真

图像识别基于matlab实现步态周期检测与步态角度特征

图像识别基于matlab实现步态周期检测与步态角度特征

基于CASIA-GaitDatasetB步态图像轮廓数据库的步态周期检测与步态角度特征MATLAB源码

“数据融合”总结1

(ICCV-2021)通过有效的全局-局部特征表示和局部时间聚合进行步态识别