批量查询HIVE所有表的大小和行数

Posted 小基基o_O

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了批量查询HIVE所有表的大小和行数相关的知识,希望对你有一定的参考价值。

文章目录

概述

  • 需求:
    1、批量查询HIVE表的大小和行数
    2、批量查询HIVE表文件数和分区数
  • 思路
    借助程序(本文为Python2)遍历HIVE表,DESC FORMATTED获取表状态信息
  • 我们往往不需要所有表,而是指定的表,筛选方法:
    1、制定表名规则,USE 库+SHOW TABLES+LIKE进行筛选
    2、在mysql(HIVE元数据存储位置)进行筛选

批量获取HIVE表基本信息

SELECT
    b.`NAME`,           -- 库名
    t.`TBL_NAME`,       -- 表名
    t.`TBL_TYPE`,       -- 表类型
    c.`PARAM_VALUE`,    -- 表注释
    s.`LOCATION`        -- 表的HDFS路径
FROM `DBS`b
INNER JOIN `TBLS`t ON t.`DB_ID`=b.`DB_ID`
INNER JOIN `SDS`s ON s.`SD_ID`=t.`SD_ID`
LEFT JOIN (
    SELECT `TBL_ID`,`PARAM_VALUE`
    FROM `TABLE_PARAMS`
    WHERE `PARAM_KEY`='comment'
)c ON c.`TBL_ID`=t.`TBL_ID`
WHERE t.`TBL_TYPE`='MANAGED_TABLE' OR t.`TBL_TYPE`='EXTERNAL_TABLE';

查询单个HIVE表的大小和行数

DESC FORMATTED 库名.表名;

代码

MySQL建表,用于存储查询结果

USE data_management;
CREATE TABLE hive_table_status(
  update_time     TIMESTAMP     NOT NULL DEFAULT CURRENT_TIMESTAMP,
  table_name      VARCHAR(255)  NOT NULL      COMMENT "HIVE表名.库名",
  num_partitions  INT           DEFAULT NULL  COMMENT "分区数",
  raw_data_size   BIGINT        DEFAULT NULL  COMMENT "原始数据大小",
  total_size      BIGINT        DEFAULT NULL  COMMENT "总大小(不含副本)",
  num_rows        BIGINT        DEFAULT NULL  COMMENT "行数",
  num_files       INT           DEFAULT NULL  COMMENT "文件数",
  PRIMARY KEY(table_name)
)COMMENT "HIVE表状态信息";

Python2

# coding:utf-8
from subprocess import check_output
from time import time, strftime
from re import findall

# HIVE元数据所在的库
META_STORE = 'hive'
# 数据存储路径
MYSQL_DB = 'data_management'
MYSQL_TB = 'hive_table_status'
# 查询HIVE表
SQL = '''
SELECT
    b.`NAME`     AS db_name,  -- 库名
    t.`TBL_NAME` AS tb_name   -- 表名
FROM `DBS` b
INNER JOIN `TBLS` t ON b.`DB_ID`=t.`DB_ID`
WHERE 1=1
'''
HIVE_DB = ''  # 根据库来筛选HIVE表,默认不筛选
EXTERNAL_TABLE = False  # 是否筛选外部表


class Executor:
    def __init__(self, **kwargs):
        # 起始秒数
        self.t = time()
        # 传参:https://yellow520.blog.csdn.net/article/details/122088401
        self.parameters = kwargs

    def __del__(self):
        print '结束时间:'.format(self.now)
        print '运行时长:'.format(self)

    def __str__(self):
        t = self.second
        if t < 3600:
            return '%.2fmin' % (t / 60)
        else:
            return '%.2fh' % (t / 3600)

    @property
    def second(self):
        """程序运行秒数"""
        return time() - self.t

    @property
    def now(self):
        return strftime('%Y-%m-%d %H:%M:%S')

    @staticmethod
    def sh(cmd):
        """执行Shell命令"""
        return check_output(cmd, shell=True).strip()


class Mysql(Executor):
    def e(self, sql):
        host = self.parameters.get('host', 'localhost')
        user = self.parameters.get('user', 'root')
        password = self.parameters.get('password')
        database = self.parameters.get('database')
        sql = sql.replace("'", '"')
        return self.sh("mysql -h'' -u'' -p'' -D'' -e''".format(
            host, user, password, database, sql))

    def fetch_dt(self, sql):
        lines = self.e(sql).split('\\n')
        if len(lines) > 1:
            columns = lines[0].split('\\t')
            col_num = len(columns)
            for line in lines[1:]:
                cells = line.split('\\t')
                yield columns[i]: cells[i] for i in range(col_num)

    def replace(self, dt, tb):
        ls = [(k, v) for k, v in dt.items() if v is not None]
        sql = 'REPLACE INTO %s (' % tb + ','.join(i[0] for i in ls) + \\
              ') VALUES (' + ','.join('%r' % i[1] for i in ls) + ')'
        self.e(sql)


class Hive(Executor):
    def e(self, sql):
        return self.sh("hive -e ''".format(sql))


class Monitor:
    def __init__(self, mysql_pwd):
        self.mysql_hive_meta_store = Mysql(password=mysql_pwd, database=META_STORE)
        self.mysql_db = Mysql(password=mysql_pwd, database=MYSQL_DB)
        self.hive = Hive()
        self.hive_result = ''

    def find_all(self, pattern):
        a = findall(pattern, self.hive_result)
        if a:
            a = a[0]
            if a.isdigit():
                return int(a)
            return a
        return None

    def select_hive_tables(self):
        sql = SQL
        if HIVE_DB:
            sql += ' AND b.`NAME`="hive_db"'.format(hive_db=HIVE_DB)
        if EXTERNAL_TABLE is True:
            sql += ' AND `TBL_TYPE`="EXTERNAL_TABLE"'
        for dt in self.mysql_hive_meta_store.fetch_dt(sql):
            yield '.'.format(dt['db_name'], dt['tb_name'])

    def desc_formatted(self, table):
        sql = 'DESC FORMATTED ;'.format(table)
        self.hive_result = self.hive.e(sql)
        return 
            'table_name': table,
            'num_partitions': self.find_all(r'numPartitions\\s+([0-9]+)'),
            'raw_data_size': self.find_all(r'rawDataSize\\s+([0-9]+)'),
            'total_size': self.find_all(r'totalSize\\s+([0-9]+)'),
            'num_rows': self.find_all(r'numRows\\s+([0-9]+)'),
            'num_files': self.find_all(r'numFiles\\s+([0-9]+)'),
        

    def main(self):
        for tb in self.select_hive_tables():
            self.mysql_db.replace(self.desc_formatted(tb), MYSQL_TB)

    def main2(self):
        ls = []
        for tb in self.select_hive_tables():
            dt = self.desc_formatted(tb)
            # 平均每个文件大小,单位MB
            if dt['total_size'] and dt['num_files']:
                dt['avg_file_mb'] = 1. * dt['total_size'] / dt['num_files'] / 1024
            # 平均每个分区大小,单位MB
            if dt['total_size'] and dt['num_partitions']:
                dt['avg_partition_mb'] = 1. * dt['total_size'] / dt['num_partitions'] / 1024
            # 平均每个分区文件数
            if dt['num_files'] and dt['num_partitions']:
                dt['avg_partition_num_files'] = 1. * dt['num_files'] / dt['num_partitions']
            ls.append(dt)
        for dt in ls:
            print dt


if __name__ == '__main__':
    Monitor(mysql_pwd='密码').main()

结果查询

USE hive;
SELECT
  b.`NAME`,           -- 库名
  t.`TBL_NAME`,       -- 表名
  t.`TBL_TYPE`,       -- 表类型
  c.`PARAM_VALUE`,    -- 表注释
  s.`LOCATION`,       -- 表的HDFS路径
  d.`update_time`,    -- HIVE表最近一次状态的更新时间
  d.`num_partitions`, -- 分区数
  d.`raw_data_size`,  -- 原始数据大小",
  d.`total_size`,     -- 总大小(不含副本)
  d.`num_rows`,       -- 行数
  d.`num_files`,      -- 文件数
  d.`total_size`/d.`num_files`/1024 AS `avg_file_mb`,            -- 平均每个文件大小,单位MB
  d.`total_size`/d.`num_partitions`/1024 AS `avg_partition_mb`,  -- 平均每个分区大小,单位MB
  d.`num_files`/d.`num_partitions` AS `avg_partition_num_files`  -- 平均每个分区文件数
FROM `DBS`b
INNER JOIN `TBLS`t ON t.`DB_ID`=b.`DB_ID`
INNER JOIN `SDS`s ON s.`SD_ID`=t.`SD_ID`
LEFT JOIN (
  SELECT `TBL_ID`,`PARAM_VALUE`
  FROM `TABLE_PARAMS`
  WHERE `PARAM_KEY`='comment'
)c ON c.`TBL_ID`=t.`TBL_ID`
LEFT JOIN data_management.hive_table_status d
  ON CONCAT(b.`NAME`,'.',t.`TBL_NAME`)=d.`table_name`;

Appendix

en🔉cn
accurateˈækjərət准确的
SerDeSerialize Deserialize序列化和反序列化
transientˈtrænʃntadj. 转瞬即逝的;暂住的;n. 流动人口
compressedkəmˈprestadj. (被)压缩的;扁的;v. (被)压紧
ORCOptimized Row Columnar基于列式存储的 用于HIVE的 Hadoop生态的 文件存储格式
columnarkəˈlʌmnəradj. 柱状的;分纵栏印刷或书写的

某次DESC FORMATTED结果

# col_name            	data_type           	comment             
user_id             	string              	用户ID                
page_id             	string              	页面ID                
	 	 
# Partition Information	 	 
# col_name            	data_type           	comment             
ymd                 	string              	                    
	 	 
# Detailed Table Information	 	 
Database:           	ec                  	 
OwnerType:          	USER                	 
Owner:              	yellow              	 
CreateTime:         	Sun Mar 13 11:21:47 CST 2022	 
LastAccessTime:     	UNKNOWN             	 
Retention:          	0                   	 
Location:           	hdfs://hadoop105:8020/user/hive/warehouse/ec.db/dwd/pv	 
Table Type:         	EXTERNAL_TABLE      	 
Table Parameters:	 	 
	COLUMN_STATS_ACCURATE	\\"BASIC_STATS\\":\\"true\\"
	EXTERNAL            	TRUE                
	bucketing_version   	2                   
	comment             	页面浏览                
	numFiles            	16                  
	numPartitions       	9                   
	numRows             	3000                
	orc.compress        	snappy              
	rawDataSize         	519000              
	totalSize           	17047               
	transient_lastDdlTime	1647141707          
	 	 
# Storage Information	 	 
SerDe Library:      	org.apache.hadoop.hive.ql.io.orc.OrcSerde	 
InputFormat:        	org.apache.hadoop.hive.ql.io.orc.OrcInputFormat	 
OutputFormat:       	org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat	 
Compressed:         	No                  	 
Num Buckets:        	-1                  	 
Bucket Columns:     	[]                  	 
Sort Columns:       	[]                  	 
Storage Desc Params:	 	 
	serialization.format	1                   
Time taken: 0.184 seconds, Fetched: 40 row(s)

某次计算结果

+------------+----------------+----------------+---------------+------------+----------+-----------+-------------+
| table_name | TBL_TYPE       | num_partitions | raw_data_size | total_size | num_rows | num_files | avg_file_mb |
+------------+----------------+----------------+---------------+------------+----------+-----------+-------------+
| ec.ods_pv  | EXTERNAL_TABLE |              9 |             0 |     402845 |        0 |       132 |  2.98032818 |
| ec.dwd_pv  | EXTERNAL_TABLE |              9 |        519000 |      17047 |     3000 |        16 |  1.04046631 |
| ec.dws_pv  | EXTERNAL_TABLE |              8 |        451052 |      14616 |     2492 |        10 |  1.42734375 |
| ec.ads_pv  | EXTERNAL_TABLE |              8 |           494 |        557 |       63 |        10 |  0.05439453 |
+------------+----------------+----------------+---------------+------------+----------+-----------+-------------+

以上是关于批量查询HIVE所有表的大小和行数的主要内容,如果未能解决你的问题,请参考以下文章

查询所有HIVE表分区数据量

查询所有HIVE表分区数据量

查询所有HIVE表分区数据量

如何快捷地查询Oracle中每个用户表的表名和行数?

查询数据库各表的容量和行数,真的能用

如何用SQL语句求oracle 数据库所有表的行数?