R语言的R包及其使用

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言的R包及其使用相关的知识,希望对你有一定的参考价值。

1、通过选择菜单:
程序包->安装程序包->在弹出的对话框中,选择你要安装的包,然后确定。
2、使用命令
install.packages(package_name,dir)
package_name:是指定要安装的包名,请注意大小写。
dir:包安装的路径。默认情况下是安装在..\\library 文件夹中的。可以通过本参数来进行修改,来选择安装的文件夹。
3、本地来安装
如果你已经下载的相应的包的压缩文件,则可以在本地来进行安装。请注意在windows、unix、macOS操作系统下安装文件的后缀名是不一样的:
1)linux环境编译运行:tar.gz文件
2)windows 环境编译运行 :.zip文件
3)MacOSg环境编译运行:.tgz文件
注:包安装好后,并不可以直接使用,如果在使用包中相关的函数,必须每次使用前包加载到内存中。通过library(package_name)来完成。 包安装后,如果要使用包的功能。必须先把包加载到内存中(默认情况下,R启动后默认加载基本包),加载包命令:
Library(“包名”)
Require(“包名”) 1、查看包帮忙
library(help=package_name)
主要内容包括:例如:包名、作者、版本、更新时间、功能描述、开源协议、存储位置、主要的函数
help(package = package_name)
主要内容包括:包的内置所有函数,是更为详细的帮助文档

2、查看当前环境哪些包加载
find.package() 或者 .path.package()

3、移除包出内存
detach()
4、把其它包的数据加载到内存中
data(dsname, package=package_name)
5、查看这个包里的包有数据
data( package=package_name)
6、列出所有安装的包
library()

参考技术A 把表示时间的字符串转成时间类型数据,在R语言里面有两个基本的函数: as.POSIXlt() 和 as.POSIXct()。两者都是S3泛型函数,根据参数的数据类型选择不同的转换方法,除字符串外还能够转换数字、因子等数据类型,适应性很强!

R语言可视化——ggplot2画回归曲线

目录

0引言

数据可视化——一文入门ggplot2中介绍了ggplot2包以及他的基本语法。在R语言可视化——ggplot2包的八种默认主题及其扩展包中介绍ggplot2包中默认的八种主题。今天实战一下,使用ggplot2包画回归曲线添加回归方程、方差分析表,调整的 R 2 R^2 R2、调整回归数据等,本篇使用默认主题。

1、构造回归数据

画图离不开数据,下面使用生成随机数的方式生成数据,为了代码的可重复性设置随机数种子。

> n = 100
> set.seed(0)
> x <- runif(n, 0, 4)
> y <- x^2 - x + rnorm(n, 0, 0.4)
> MyClass <- factor((x>0) + (x>1) + (x>2) + (x>3),
+ labels = c("0-1", "1-2", "2-3", "3-4"))
> Data <- data.frame(x = x, y = y, class = MyClass)
> head(Data)
          x           y class
1 3.5867888  9.38472004   3-4
2 1.0620347 -0.08479814   1-2
3 1.4884956  1.70366940   1-2
4 2.2914135  2.64102651   2-3
5 3.6328312  9.54268009   3-4
6 0.8067277 -0.05586157   0-1
> str(Data)
'data.frame':   100 obs. of  3 variables:
 $ x    : num  3.59 1.06 1.49 2.29 3.63 ...
 $ y    : num  9.3847 -0.0848 1.7037 2.641 9.5427 ...
 $ class: Factor w/ 4 levels "0-1","1-2","2-3",..: 4 2 2 3 4 1 4 4 3 3 ...
> class(Data)
[1] "data.frame"

下部分使用本节的数据进行画图。

2、画图

2.1载入包

除了载入ggplot2包之外还需要载入扩展包:ggpmisc

library(ggplot2) #加载ggplot2包
library(ggpmisc) #加载ggpmisc包

2.2 准备数据添加散点

p <- ggplot(Data, aes(x, y)) +
 geom_point(color = "green",size = 2, alpha = 0.65)
p

2.3添加回归线

se参数控制是否显示误差区域。

p + 
 stat_smooth(color = "blue", formula = y ~ x, fill = "blue", method = "lm")+
 stat_fit_deviations(formula = y ~ x, color = "skyblue")

2.5 添加公式R方

注:label.x 、 label.y调整公式位置。

p + 
 stat_smooth(color = "blue", formula = y ~ x,fill = "blue", method = "lm") +
 stat_poly_eq(
   aes(label = paste(..eq.label.., ..adj.rr.label.., sep = '~~~~~~')),
   formula = y ~ x,  parse = TRUE,
     size = 4, # 公式字体大小
     label.x = 0.1,
     label.y = 0.8)

2.6 添加方差分析表

p + 
 stat_smooth(color = "blue", formula = y ~ x,fill = "blue", method = "glm") +
 stat_poly_eq(
   aes(label = paste(..eq.label.., ..adj.rr.label.., sep = '~~~~~~')),
   formula = y ~ x,  parse = TRUE,
     size = 4, #公式字体大小
     label.x = 0.1,
     label.y = 0.8) + 
 stat_fit_tb(method = "lm",
             method.args = list(formula = y ~ x),
             tb.type = "fit.anova",
             tb.vars = c(Effect = "term",
                         "自由度" = "df",
                         "均方" = "meansq",
                         "italic(F值)" = "statistic",
                         "italic(P值)" = "p.value"),
             label.y = 0.7, label.x = 0.05,
             size = 4.5,
             parse = TRUE
)

2.6 回归数据调整

模型的参数形式可以通过I函数去调整,如下把一次数据换成二次的数据。

p + 
 stat_smooth(color = "blue", formula = y ~ I(x^2),fill = "blue", method = "glm") +
 stat_poly_eq(
   aes(label = paste(..eq.label.., ..adj.rr.label.., sep = '~~~~~~')),
   formula = y ~ I(x^2),  parse = TRUE,
     size = 4, #公式字体大小
     label.x = 0.1,
     label.y = 0.8) + 
 stat_fit_tb(method = "lm",
             method.args = list(formula = y ~ I(x^2)),
             tb.type = "fit.anova",
             tb.vars = c(Effect = "term",
                         "自由度" = "df",
                         "均方" = "meansq",
                         "italic(F值)" = "statistic",
                         "italic(P值)" = "p.value"),
             label.y = 0.7, label.x = 0.05,
             size = 4.5,
             parse = TRUE
)


上面可以看出 R 2 R^2 R2和回归的效果变得更好了。

3、总结

上面的函数局限是只能展示一元回归的信息,多元回归的展示方式下次推出。关注持续关注。

以上是关于R语言的R包及其使用的主要内容,如果未能解决你的问题,请参考以下文章

tableau 连接R语言

R语言可视化包ggplot2包移除可视化图形的轴标签(刻度及其对应数值)实战(Remove Axis Labels)

R语言lm函数语法R语言模型公式中(formula)常用符号及其说明(~+:*^.--1I()function)

R语言 包

R语言可视化——ggplot2画回归曲线

R语言使用gls函数拟合模型并可视化模型的预测值及其置信区间实战