ElasticSearch由浅入深

Posted Henrik-Yao

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ElasticSearch由浅入深相关的知识,希望对你有一定的参考价值。

文章目录

一.elasticsearch简介

Elasticsearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java语言开发的,并作为Apache许可条款下的开放源码发布,是一种流行的企业级搜索引擎。Elasticsearch用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。
Lucene是Apache的开源搜索引擎类库,提供了搜索引擎的核心API

mysql采用正向索引(B树,B+树)
elasticsearch采用倒排索引

Mysql:擅长事务类型操作,可以确保数据的安全和一致性
Elasticsearch:擅长海量数据的搜索、分析、计算

概念对比

二.docker部署es和kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于学习

1.创建互联网联,让es和kibana容器互联

docker network create es-net

2.拉取镜像

docker pull elasticsearch:7.12.1
docker pull kibana:7.12.1

3.部署单点es

docker run -d \\
	--name es \\
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \\
    -e "discovery.type=single-node" \\
    -v es-data:/usr/share/elasticsearch/data \\
    -v es-plugins:/usr/share/elasticsearch/plugins \\
    --privileged \\
    --network es-net \\
    -p 9200:9200 \\
    -p 9300:9300 \\
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入一个名为es-net的网络中
  • -p 9200:9200:端口映射配置

访问9200端口即可看到elasticsearch的响应结果

4.部署kibana

docker run -d \\
--name kibana \\
-e ELASTICSEARCH_HOSTS=http://es:9200 \\
--network=es-net \\
-p 5601:5601  \\
kibana:7.12.1
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置

访问5601端口即可看到kibana的响应结果

三.IK分词器

es在创建倒排索引时需要对文档分词;在搜索时,需要对用户输入内容分词。但默认的分词规则对中文处理并不友好
处理中文分词,一般会使用IK分词器。https://github.com/medcl/elasticsearch-analysis-ik

1.安装IK分词器

# 进入容器内部
docker exec -it elasticsearch /bin/bash

# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

#退出
exit
#重启容器
docker restart elasticsearch

2.IK分词器包含两种模式

  • ik_smart:智能切分 最少切分 粗粒度 分出的词较少

  • ik_max_word:最细切分 细粒度 分出的词较多 内存消耗高

3.拓展词库
要拓展ik分词器的词库,只需要修改一个ik分词器目录中的config目录中的IkAnalyzer.cfg.xml文件:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
        <entry key="ext_dict">ext.dic</entry>
</properties>

然后在名为ext.dic的文件中,添加想要拓展的词语即可
4.停用词库
要禁用某些敏感词条,只需要修改一个ik分词器目录中的config目录中的IkAnalyzer.cfg.xml文件:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典-->
        <entry key="ext_dict">ext.dic</entry>
         <!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典-->
        <entry key="ext_stopwords">stopword.dic</entry>
</properties>

然后在名为stopword.dic的文件中,添加想要拓展的词语即可

四.DSL及Dev Tools

官网学习地址:https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html

DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

GET /  相当于直接访问9200端口

Dev Tools是kibana提供的一种可视化工具

五.索引库操作

1.mapping属性
映射是定义文档及其包含的字段如何存储和索引的过程。
每个文档都是字段的集合,每个字段都有自己的数据类型。 在映射数据时,创建一个映射定义,该定义包含与文档相关的字段列表。 映射定义还包括元数据字段,比如_source字段,它自定义如何处理文档的相关元数据。
mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
    • 数值:long、integer、short、byte、double、float、
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引,默认为true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

2.创建索引库
ES中通过Restful请求操作索引库、文档。请求内容用DSL语句来表示。创建索引库和mapping的DSL语法如下:

实例

3.查询索引库

GET /索引库名

实例

4.删除索引库

DELETE /索引库名

5.修改索引库
索引库和mapping一旦创建无法修改,但是可以添加新的字段,语法如下:

实例

五.文档操作

1.添加文档

2.查询文档

GET /索引库名/_doc/文档id

3.删除文档

DELETE /索引库名/_doc/文档id

4.修改文档

  • 方式一:全量修改,会删除旧文档,添加新文档

  • 方式二:增量修改,修改指定字段值

六.RestClient操作索引库

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES
官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html
1.初始化RestClient
指定版本,需要与es版本一致

<properties>
     <java.version>1.8</java.version>
     <elasticsearch.version>7.12.1</elasticsearch.version>
</properties>

导入包

<dependency>
     <groupId>org.elasticsearch.client</groupId>
     <artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>

初始化RestClient

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(
	HttpHost.create("http://101.43.16.42:9200")
));;

2.创建索引库

@Test
void createHotelIndex() throws IOException 
    // 1.创建Request对象
    CreateIndexRequest request = new CreateIndexRequest("hotel");
    // 2.准备请求参数;DSL语句
    //MAPPING_TEMPLATE是静态常量字符串,内容是创建索引库的DSL语句
    request.source(MAPPING_TEMPLATE, XContentType.JSON);
    // 3.发送请求
    client.indices().create(request, RequestOptions.DEFAULT);

3.删除索引库

@Test
void testDeleteHotelIndex() throws IOException 
    // 1.创建Request对象
    DeleteIndexRequest request = new DeleteIndexRequest("hotel");
    // 2.发送请求
    client.indices().delete(request, RequestOptions.DEFAULT);

4.判断索引库是否存在

@Test
void testExitHotelIndex() throws IOException 
    // 1.创建Request对象
    GetIndexRequest request = new GetIndexRequest("hotel");
    // 2.发送请求
    boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
    //3.输出结果
    System.out.println(exists);

七.RestClient操作文档

1.新增文档

 @Test
void testAddDocument() throws IOException 
    //根据id查询酒店数据
    Hotel hotel = hotelService.getById(61083L);
    // 1.创建Request对象
    IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());
    // 2.准备请求参数;DSL语句
    request.source(JSON.toJSONString(hotel),XContentType.JSON);
    // 3.发送请求
    client.index(request, RequestOptions.DEFAULT);

2.查询文档

@Test
void testGetDocumentById() throws IOException 
    // 1.创建Request对象
    GetRequest request = new GetRequest("hotel", "61083");
    // 2.发送请求
    GetResponse response = client.get(request, RequestOptions.DEFAULT);
    // 3.解析响应结果
    String json = response.getSourceAsString();
    //反序列化
    HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
    System.out.println(hotelDoc);

3.更新文档

@Test
void testUpdateDocument() throws IOException 
    // 1.准备request
    UpdateRequest request = new UpdateRequest("hotel", "61083");
    // 2.准备请求参数
    request.doc(
            "price","952",
            "starName","四钻"
    );
    // 3.发送请求
    client.update(request, RequestOptions.DEFAULT);

4.删除文档

@Test
void testDeleteDocument() throws IOException 
    // 1.准备request
    DeleteRequest request = new DeleteRequest("hotel", "61083");
    // 2.发送请求
    client.delete(request, RequestOptions.DEFAULT);

5.批量新增文档

@Test
void testBulkDocument() throws IOException 
    //批量查询酒店数据
    List<Hotel> hotels = hotelService.list();
    // 1.创建Request对象
    BulkRequest request = new BulkRequest();
    // 2.准备请求参数,添加多个新增的Request
    for(Hotel hotel:hotels)
        // 转换为HotelDoc
        HotelDoc hotelDoc = new HotelDoc(hotel);
        request.add(new IndexRequest("hotel")
                .id(hotel.getId().toString())
                .source(JSON.toJSONString(hotelDoc),XContentType.JSON));
    
    // 3.发送请求
    client.bulk(request, RequestOptions.DEFAULT);

八.DSL查询语法

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。
官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html

常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:
    • match_all
  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:
    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:
    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询。例如:
    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:
    • bool
    • function_score

查询的语法基本一致:

  • 查询类型为match_all
  • 没有查询条件
    1.全文检索
    全文检索查询,会对输入框输入内容分词,常用于搜索框搜索
    ①match查询:单字段查询
    ②multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

ps:multi_match根据多个字段查询,参与查询字段越多,查询性能越差,使用copy_to将多字段拷贝到一个字段中可以提升性能

2.精确查询
精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词
①term:根据词条精确值查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据

②range:根据值的范围查询

gte代表大于等于,gt则代表大于
lte代表小于等于,lt则代表小于


3.地理查询
①geo_distance
附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档

②geo_bounding_box
矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档

4.复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

相关性算法
TF对比BM25
①fuction score

function score query定义的三要素

  • 过滤条件:哪些文档要加分
  • 算分函数:如何计算function score
  • 加权方式:function score 与 query score如何运算

②bool query

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,一遍这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
  • 其它过滤条件,采用filter查询。不参与算分

九.搜索结果处理

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。
官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/sort-search-results.html

1.排序

①常规字段排序

②地理位置排序



2.分页

深度分页问题



解决深度分页问题

官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/paginate-search-results.html

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。

分页查询的常见实现方案以及优缺点

  • from + size

    • 优点:支持随机翻页
    • 缺点:深度分页问题,默认查询上限(from + size)是10000
    • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
  • after search

    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:只能向后逐页查询,不支持随机翻页
    • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
  • scroll

    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:会有额外内存消耗,并且搜索结果是非实时的
    • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

3.高亮

高亮显示的实现分为两步:
给文档中的所有关键字都添加一个标签,例如标签
页面给标签编写CSS样式


十.RestClient查询文档

查询的基本步骤是:

  1. 创建SearchRequest对象

  2. 准备Request.source(),也就是DSL。

    ① QueryBuilders来构建查询条件

    ② 传入Request.source() 的 query() 方法

  3. 发送请求,得到结果

  4. 解析结果(参考JSON结果,从外到内,逐层解析)



elasticsearch返回的结果是一个JSON字符串,结构包含:

  • hits:命中的结果
    • total:总条数,其中的value是具体的总条数值
    • max_score:所有结果中得分最高的文档的相关性算分
    • hits:搜索结果的文档数组,其中的每个文档都是一个json对象
      • _source:文档中的原始数据,也是json对象

因此,解析响应结果,就是逐层解析JSON字符串,流程如下:

  • SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果
    • SearchHits#getTotalHits().value:获取总条数信息
    • SearchHits#getHits():获取SearchHit数组,也就是文档数组
      • SearchHit#getSourceAsString():获取文档结果中的_source,也就是原始的json文档数据

完整代码

@Test
void testMatchAll() throws IOException 
    // 1.创建Request对象
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备请求参数;DSL语句
    request.source().query(QueryBuilders.matchAllQuery());
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);

    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获得总条数
    long total = searchHits.getTotalHits().value;
    System.out.println(total);
    // 4.1.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for(SearchHit hit : hits)
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        System.out.println(hotelDoc);
    

1.全文检索查询

@Test
void testMatch() throws IOException 
    // 1.创建Request对象
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备请求参数;DSL语句
    request.source()
            .query(QueryBuilders.matchQuery("all", "如家"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);

    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获得总条数
    Elasticsearch在Elasticsearch中查询Term Vectors词条向量信息

ElasticSearch 在Java中的各种实现

ElasticSearch由浅入深

ElasticSearch由浅入深

Elasticsearch搜索之cross_fields分析

浅入深出ElasticSearch构建高性能搜索架构