Hive on Spark和Spark sql on Hive,你能分的清楚么

Posted 华为云开发者社区

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hive on Spark和Spark sql on Hive,你能分的清楚么相关的知识,希望对你有一定的参考价值。

摘要:结构上Hive On Spark和SparkSQL都是一个翻译层,把一个SQL翻译成分布式可执行的Spark程序。

本文分享自华为云社区《Hive on Spark和Spark sql on Hive有啥区别?》,作者:dayu_dls 。

结构上Hive On Spark和SparkSQL都是一个翻译层,把一个SQL翻译成分布式可执行的Spark程序。Hive和SparkSQL都不负责计算。Hive的默认执行引擎是mr,还可以运行在Spark和Tez。Spark可以连接多种数据源,然后使用SparkSQL来执行分布式计算。

Hive On Spark 配置

(1)首先安装包要选择对,否则就没有开始了。

Hive版本:apache-hive-2.1.1-bin.tar

spark版本:spark-1.6.3-bin-hadoop2.4-without-hive(不需要把Hive编译进去)

(2)假设你已经安装好Hive(元数据为Derby)和spark,那么默认Hive走mr,需要修改以下配置让Hive走spark

<property>
    <name>hive.execution.engine</name>
    <value>spark</value>
</property>

(3)配置环境变量及运行时参数

在hive-site.xml中配置SPARK_HOME;

在hive-site.xml或者或者spark-default.conf或者spark-env.conf配置spark运行时参数,也可以在Hive运行环境中设置临时参数:

set spark.master=<Spark Master URL>
set spark.eventLog.enabled=true;
set spark.eventLog.dir=<Spark event log folder (must exist)>
set spark.executor.memory=512m;            
set spark.serializer=org.apache.spark.serializer.KryoSerializer;

将编译好的Spark安装包中lib目录下的spark-assembly-*.jar包添加至HIVE_HOME/lib中

(4)启动Hive

/opt/hive/bin/hive --service metastore

(5)启动Hive命令行窗口

beeline -u jdbc:hive2://localhost:10000  或者  /opt/hive/bin/hive

(6)开启你的Hive on spark之旅

0: jdbc:hive2://localhost:10000> create table test (f1 string,f2 string) stored as orc;

No rows affected (2.018 seconds)

0: jdbc:hive2://localhost:10000> insert into test values(1,2);

Spark sql on Hive

(1)获取包

Hive版本:apache-hive-2.1.1-bin.tar

spark版本:spark-1.6.3-bin-hadoop2.4(需要把Hive编译进去)

(2)在$SPARK_HOME/conf目录创建hive-site.xml文件,内容如下:

<configuration>  
<property>  
    <name>hive.metastore.uris</name>  
    <value>thrift://master1:9083</value>  
    <description>Thrift URI for the remote metastore. Used by metastore client to connect to remote metastore.</description>  
  </property>  
</configuration>

(3)如果你使用的元数据库是mysql,那么请把mysql驱动放到$SPARK_HOME/lib下,否则跳过。

(4)启动Hive元数据服务,待spark运行时访问。

(5)执行命令

./bin/spark-shell --master spark://master:7077
scala> val hc = new org.apache.spark.sql.hive.HiveContext(sc);
scala> hc.sql("show tables").collect.foreach(println)
[sougou,false]
[t1,false]

Sparkthriftserver启

spark提供了spark-sql命令可以直接操作hive或impala,可以启用sparkthriftserver服务,然后利用beeline远程连接spark,利用spark sql。sparksql的诞生其实就是为了代替hsql。Sparksql的元数据也是使用hive的metastore进行管理,所以需要配置hive.metastore.uris参数。

这里说下sparkthriftserver和hivethriftserver的区别,二者的端口一定要区分:

hivethriftserver:hive服务端的服务,远程通过jdbc或者beeline连接,使用hsql操作hive。

sparkthriftserver:spark的服务,远程通过jdbc或者beeline连接spark,使用spark sql操作hive。

(1)在$SPARK_HOME/conf目录创建hive-site.xml文件,内容如下:

<configuration>  
<property>  
    <name>hive.metastore.uris</name>  
    <value>thrift://master1:9083</value>  
    <description>Thrift URI for the remote metastore. Used by metastore client to connect to remote metastore.</description>  
  </property>  
<!--Thrift JDBC/ODBC server-->
   <property>
       <name>hive.server2.thrift.min.worker.threads</name>
       <value>5</value>
   </property>
   <property>
       <name>hive.server2.thrift.max.worker.threads</name>
       <value>500</value>
   </property>
   <property>
       <name>hive.server2.thrift.port</name>
       <value>10001</value>
   </property>
   <property>
       <name>hive.server2.thrift.bind.host</name>
       <value>master</value>
   </property>
</configuration>  

(2)启动sparkthriftserver

./start-thriftserver.sh --hiveconf hive.server2.thrift.port=10000 --master yarn --driver-class-path /data/spark-2.2.0-bin-hadoop2.7/jars/mysql-connector-java-5.1.43-bin.jar --executor-memory 5g --total-executor-cores 5

启动sparkthriftserver后,后台默认会执行spark-sql命令,实际上是用spark-submit向yarn提交一个任务。这样就会在yarn的8088页面任务栏中起一个常驻任务,用来执行spark sql。

(3)连接spark

./beeline -u jdbc:hive2://172.168.108.6:10001 -n root

(4)这里的sql可以在8088页面看到执行过程。

点击关注,第一时间了解华为云新鲜技术~

以上是关于Hive on Spark和Spark sql on Hive,你能分的清楚么的主要内容,如果未能解决你的问题,请参考以下文章

10.spark sql之快速入门

Hive on Spark

Spark SQL on HIVE

黑猴子的家:Spark on hive 与 hive on spark 的区别

Hive进阶-- Hive SQLSpark SQL和 Hive on Spark SQL

什么是Hive on Spark